
(Nominal) Unification by Recursive Descent
with Triangular Substitutions

Ramana Kumar1 and Michael Norrish2

1 The Australian National University u4305025@anu.edu.au

2 National ICT Australia Michael.Norrish@nicta.com.au

Abstract. We mechanise termination and correctness for two unifica-
tion algorithms, written in a recursive descent style. One computes uni-
fiers for first order terms, the other for nominal terms (terms including
α-equivalent binding structure). Both algorithms work with triangular
substitutions in accumulator-passing style: taking a substitution as in-
put, and returning an extension of that substitution on success.
This style of algorithm has performance benefits and has not been mech-
anised previously. The algorithms use nested recursion so the termination
proofs are non-trivial; the termination relation is also slightly different
from usual.

1 Introduction

The fastest known unification algorithms are time and space linear (or almost
linear) in the size of the input terms [1–3]. In the case of nominal unification,
a polynomial algorithm is known to exist [4]. By comparison, the algorithms in
this paper are näıve in two ways: they perform recursive descent of the terms
being unified, applying new bindings along the way; and they perform the occurs
check with every new binding. Recursive descent interleaved with application can
require time exponential in the size of the original terms. Also, it is possible to
perform a single occurs check at the end of unification, or even to do the occurs
check implicitly, in an algorithm that doesn’t use recursive descent.

However, näıve algorithms are used in real systems for a number of reasons:
worst case inputs do not come up often in practice, systems that perform unifi-
cation frequently must pay to encode the input and decode the output of a fast
algorithm (unless the same representations can be used throughout the system),
and näıve algorithms are simpler to implement and teach.

Some evidence for the first two assertions can be found in Hoder & Voronkov [5]
where an imperative version of the algorithm in this paper (there labelled “Robin-
son’s”) benchmarks better than the worst-case linear algorithms. These bench-
marks were made in the context of automated theorem provers with term index-
ing; we don’t consider the maintenance of a term index in this paper.

One important feature of the algorithms considered by Hoder & Voronkov is
that they all use triangular substitutions. Such substitutions are important in
systems that do backtracking and need to “unapply” substitutions from terms.

The unapply operation can be made implicit (and thus, efficient) by updating a
shared substitution (making it “persistent”): backtracking computations can ap-
ply the appropriate subset of the shared substitution whenever terms in context
are required.

A triangular substitution [6] is a set of singleton maps (each binding a dif-
ferent variable). When this set is implemented as a list, update is constant time
and sharing is maximised. When using triangular substitutions, and writing in a
functional language, it is natural to write unification in an accumulator-passing
style. (The analogue in an imperative setting is to simply update some shared
global, which is what happens in the implementation of Robinson’s algorithm
in Hoder & Voronkov.) So, for example, the unification algorithm in miniKan-

ren [7, 8] takes two terms, t1 and t2, and an input substitution, s. It returns an
extension of s with any new bindings necessary to make t1 and t2 unify (or fails
if that’s impossible).

Triangular substitutions are generally not idempotent. For example, a binding
from y to z may be added to a substitution already binding x to y. Applying
the extended substitution once to x yields y, but applying it twice yields z. But
a triangular substitution can represent the same information as an idempotent
substitution using exponentially less space. For example if x is bound to the pair
(y, y) and y is bound to the pair (z, z) then an idempotent substitution would
contain three copies of the term (z, z), whereas a triangular substitution would
contain just one.

Baader & Snyder [6] mention using triangular substitutions in a recursive
descent algorithm as a good idea, but do not pursue it because of the exponential
time complexity. Our own experiments agree that doing so gives better speed
and memory usage than computing idempotent substitutions.

Nominal Unification Classical unification works over first-order terms. Recently,
there has been interest in the theory and implementation of logical systems using
nominal terms, which include names and binders. Such terms provide natural
representations of syntaxes occurring in logic and computer science; contrast the
opaque indices of de Bruijn encodings.

Nominal systems (e.g., αProlog [9], alphaKanren [10]) need to be able to
unify nominal terms. The mechanisations in this paper are of algorithms inspired
by the implementations in miniKanren (first-order) and alphaKanren (nominal).
(The alphaKanren paper [10] describes unification with idempotent substitutions;
our mechanisation is of a later, more efficient implementation using triangular
substitutions.)

Outline In Section 2, we describe first-order terms, triangular substitutions, and
the important well-formedness condition on the latter. In Section 3, we describe
the application of substitutions to terms, as generalised for non-idempotent sub-
stitutions. In Section 4, we describe the definition and termination proof for
first-order unification. In Section 5, we prove unification meets its specification,
with statements of correctness suitable for its accumulator-passing style. In Sec-

tion 6, we describe the extra work necessary to repeat the above for nominal
unification.

The mechanised theories containing all the results in this paper are available
online at https://bitbucket.org/michaeln/formal_mk/src/tip/theories/.
Since the results have been machine-checked, we will omit the proofs of some
lemmas; the statements of the lemmas should help in understanding the main
results.

Notation In general, higher order logic syntax for Boolean terms uses standard
connectives and quantifiers (∧, ∀ etc.). Iterated application of a function is writ-
ten f n x , meaning f(f(. . . f(x))).

The do notation is used for writing in monadic style. We only use it to express
bind in the option monad: the term do y ← f x ; g y od means NONE if f x
returns NONE otherwise SOME (g v) if f x returns SOME v .

FLOOKUP fm k applies a finite map, returning SOME v when the key is in
the domain, otherwise NONE. The domain of a finite map is written FDOM fm .
The sub-map relation is written fm

1
⊑ fm

2
. The empty finite map is written

FEMPTY. The update of a finite map with a new key-value pair is written fm |+

(k,v). Composition of a function after a finite map is written f ◦ fm .
R+ denotes the transitive closure of a relation.
Tuples and inductive data types can be deconstructed by case analysis. The

notation is case t
1

of p
1
→ e

1
‖ p

2
→ e

2
. Patterns may include under-

scores as wildcards.
For each type, the constant ARB denotes an arbitrary object of that type.

2 Terms and Substitutions

The word “substitution” can refer to the act of replacing some variables in a
term with terms—substitution of t1 for x and t2 for y in t—or it can refer to a
collection of variable bindings that may be applied to a term—the substitution
that binds x to t1 and y to t2. When a substitution in the latter sense is repre-
sented by a function that performs the variable replacement (usually a function
from variables to variables that is lifted to terms), the two senses almost coincide:
applying a substitution versus the function that performs the application.

But sometimes substitutions are represented by data structures admitting
just variable lookup, and a separate application function, which takes a substitu-
tion and a term, substitutes and returns the new term. Different data structures
may represent substitutions that are equivalent under application. This paper
distinguishes substitutions as data structures from substitution application in
order to investigate a representation of substitutions, triangular form, suited to
the functional programming idiom of implicitly shared data.

We define first-order terms inductively as follows. We represent variables by
natural numbers (strings would be equally good); constants can be represented
by any type.

Definition 1. Terms

datatype term
= Var of num | Pair of term ⇒ term | Const of const

It should be straightforward to transfer all the results in this paper to a
setting in which terms are generated from a signature. We use Pair and Const

term constructors to avoid littering our proofs with assertions that all terms are
from the same signature. This is also the model used by miniKanren.

We represent a substitution (the HOL type subst) as a finite map from
numbers to terms, thereby abstracting over any particular data structure (an
association list or something more sophisticated) without losing the distinction
between a substitution and its application. Application to a term is defined as
follows. We will define a different notion of substitution application more suited
to triangular substitutions in Section 3.

Definition 2. Substitution application

s ' (Var v) = case FLOOKUP s v of NONE → Var v ‖ SOME t → t
s ' (Pair t

1
t
2
) = Pair (s ' t

1
) (s ' t

2
)

s ' (Const c) = Const c

A substitution is idempotent if repeated application is the same as a single ap-
plication. Applying a substitution to a variable outside its domain yields that
variable. But our representation permits a substitution explicitly binding a vari-
able to itself. We will exclude such substitutions with the condition noids s .

The application of a substitution s to itself is obtained by replacing every
term t in the range of s by its image under s. This is the closest we will get
to substitution composition (selfapp s is s composed with itself); instead we
compose application functions, which gives the same effect.

Lemma 1. ⊢ ∀ t. selfapp s ' t = s ' (s ' t)

2.1 Well-formed Substitutions

For each substitution s we define a relation vR s that holds between a variable
in the domain and a variable in the corresponding term.

Definition 3. Relating a variable to those in the term to which it’s bound

vR s y x ⇐⇒
case FLOOKUP s x of NONE → F ‖ SOME t → y ∈ vars t

A substitution is well-formed (wfs) if vR s is well-founded. There are three
informative statements equivalent to the well-formedness of a substitution. We
omit the proofs from this paper since they are not our main focus.

Lemma 2. Only well-formed substitutions have no cycles

⊢ wfs s ⇐⇒ ∀ v. ¬(vR s)+ v v

Corollary 1. ⊢ wfs s ⇒ noids s

Lemma 3. Only well-formed substitutions are well-formed after self-application

⊢ wfs s ⇐⇒ wfs (selfapp s)

Lemma 4. Only well-formed substitutions have fixpoints

⊢ wfs s ⇐⇒ ∃n. idempotent (selfappn s) ∧ noids (selfappn s)

Lemma 4, together with Lemma 1 above, shows that well-formedness is necessary
and sufficient for being able to recover an equivalent idempotent substitution.

We also have two interesting results about idempotent substitutions that
were used in proving the above.

Lemma 5. Only idempotent substitutions have domain and range disjoint

⊢ idempotent s ∧ noids s ⇐⇒ DISJOINT (FDOM s) (rangevars s)

Lemma 6. Idempotent substitutions are well-formed

⊢ idempotent s ∧ noids s ⇒ wfs s

3 Substitution Application

Since we are interested in maintaining triangular substitutions, we want to be
able to apply a non-idempotent substitution as if we had collapsed it down to an
idempotent one by repeated self-application without actually doing so. This is
easily achieved via recursion in the application function walk* (we write s ⊲ t
for the application of walk* to substitution s and term t): if we encounter a
variable in the domain of the substitution, we look it up and recur on the result.
Defining this function presents the first of a number of interesting termination
problems. When defined, we derive the following characterisation:

Lemma 7. Characterisation of walk*

⊢ wfs s ⇒
s ⊲ Var v =

(case FLOOKUP s v of NONE → Var v ‖ SOME t → s ⊲ t) ∧
s ⊲ Pair t

1
t
2

= Pair (s ⊲ t
1
) (s ⊲ t

2
) ∧

s ⊲ Const c = Const c

Lemma 8. walk* reduces to application on idempotent substitutions

⊢ wfs s ⇒ (idempotent s ⇐⇒ walk* s = (') s)

The walk* function can be viewed as performing a tree traversal (“walk”) of
its eventual output term. Other algorithms, including unify, need to perform
some of this tree walk, but may not need to immediately traverse a term to its
leaves. We isolate the part of walk* that finds the ultimate binding of a variable,
calling this vwalk:

Definition 4. Walking a variable

wfs s ⇒
vwalk s v =

case FLOOKUP s v of

SOME (Var u) → vwalk s u
‖ SOME t → t
‖ NONE → Var v

Proving termination for vwalk under the assumption wfs s follows easily from
the definitions.

Following the miniKanren code, we define a function walk, which either calls
vwalk if its argument is a variable, or returns its argument. It is a common
miniKanren idiom (used in unify, among other places) to begin functions by
walking term arguments using the current substitution. This reveals just enough
of a term-in-context’s structure for the current level of recursion.

The same idiom is also used in the definition of walk*, which can be stated
thus:

Definition 5. Substitution application, walking version

wfs s ⇒
s ⊲ t =

case walk s t of

Pair t
1

t
2
→ Pair (s ⊲ t

1
) (s ⊲ t

2
)

‖ t ′ → t ′

The termination relation for walk* is the lexicographic combination of the
multi-set ordering with respect to (vR s)+ over a term’s variables, and the
term’s size.

4 Unification: Definition

Our unification algorithm, unify, has type

subst → term → term → subst option

The option type in the result is used to signal whether or not the input terms
are unifiable. We accept that unify will have an undefined value when given a
malformed substitution as input. Our strategy for defining unify is to define a
total version, tunify; to extract and prove the termination conditions; and to
then show that unify exists and equals tunify for well-formed substitutions.
The definition of tunify is as follows; the definition of unify will be the then

branch of the if.

Definition 6. Unification with triangular substitutions (total version)

tunify s t
1

t
2

=

if wfs s then

case (walk s t
1
,walk s t

2
) of

(Var v
1
,Var v

2
) →

SOME (if v
1

= v
2

then s else s |+ (v
1
,Var v

2
))

‖ (Var v
1
,t

2
) →

if oc s t
2

v
1

then NONE else SOME (s |+ (v
1
,t

2
))

‖ (t
1
,Var v

2
) →

if oc s t
1

v
2

then NONE else SOME (s |+ (v
2
,t

1
))

‖ (Pair t1a t1d,Pair t2a t2d) →
do sx ← tunify s t1a t2a; tunify sx t1d t2d od

‖ (Const c
1
,Const c

2
) → if c

1
= c

2
then SOME s else NONE

‖ _ → NONE

else

ARB

Three termination conditions are generated by HOL, corresponding to the need
for a well-founded relation and the two recursive calls:

1. WF R
2. ∀ t

2
t
1

s t1a t1d t2a t2d.
wfs s ∧ walk s t

1
= Pair t1a t1d ∧ walk s t

2
= Pair t2a t2d ⇒

R (s,t1a,t2a) (s,t
1
,t

2
)

3. ∀ t
2

t
1

s t1a t1d t2a t2d sx .
wfs s ∧
(walk s t

1
= Pair t1a t1d ∧ walk s t

2
= Pair t2a t2d) ∧

tunify_tupled_aux R (s,t1a,t2a) = SOME sx ⇒
R (sx ,t1d,t2d) (s,t

1
,t

2
)

A call to tunify_tupled_aux appears in condition 3 because the argument
sx in the second recursive call tunify sx t1d t2d is the result of the first
recursive call. This is thus an instance of nested recursion.

The unify function walks the subterms being considered in the current sub-
stitution before case analysis. The key to the termination argument is that size of
the subterms, considered in the context of the updated substitution, goes down
on every recursive call. The termination relation uR, defined below, makes this
statement in the final conjunct. The other conjuncts are also satisfied by the
algorithm and are required to ensure that uR is well-founded.

Definition 7. Termination relation (uR)

uR (sx ,c
1
,c

2
) (s,t

1
,t

2
) ⇐⇒

wfs sx ∧ s ⊑ sx ∧ sysvars sx c
1

c
2
⊆ sysvars s t

1
t
2
∧

measure (term_depth ◦ walk* sx) c
1

t
1

Theorem 1. uR is well-founded

⊢ WF uR

Proof. By contradiction. If there is an infinite uR-chain, then the set of variables
in the arguments (sysvars) must reach a fixpoint because each successive set is

a subset of its predecessor, and the sets are finite. As the set of system variables
is getting smaller, the substitutions are allowed to get larger (the ⊑ relation).
However, once the set of system variables reaches its fixpoint, the substitutions
will be drawing on a fixed source for new variable bindings, and must also reach
a fixpoint. Once this happens, the measure conjunct of the relation has a fixed
first argument (the sx argument is fixed) and this ensures that the supposedly
infinite chain cannot exist.

We thereby satisfy termination condition 1. Condition 2 is easy because the
substitution doesn’t change.

Lemma 9. Termination condition 2

uR (s,t1a,t2a) (s,t
1
,t

2
)

Proof. For the conjunct involving sysvars: either t1 = Pair t1a t1d or the pair
is in the range of the substitution, and similarly for t2. The other uR conjuncts
are simple.

Condition 3 however, requires some work. We define another relation, uP,
weaker than uR, which asserts that the variables of the result substitution all
come from the arguments. The uP relation serves as a bridge: weak enough that
we can prove it is satisfied by tunify by induction and strong enough that it
implies uR. We use a relation that restricts the substitution only since at this
point we can’t say much about recursive calls without proving uR for each call.

Definition 8. Relation between the output substitution and input arguments

uP sx s t
1

t
2
⇐⇒

wfs sx ∧ s ⊑ sx ∧ substvars sx ⊆ sysvars s t
1

t
2

Lemma 10. uP implies uR on subterms

⊢ wfs s ∧ walk s t
1

= Pair t1a t1d ∧
walk s t

2
= Pair t2a t2d ∧

(uP sx s t1a t2a ∨ uP sx s t1d t2d) ⇒
uR (sx ,t1d,t2d) (s,t

1
,t

2
)

Lemma 11. unify implies uP

⊢ ∀ s t
1

t
2

sx .
wfs s ∧ tunify_tupled_aux uR (s,t

1
,t

2
) = SOME sx ⇒

uP sx s t
1

t
2

Proof. By well-founded induction (knowing that uR is well-founded).

Lemma 12. Termination condition 3

⊢ wfs s ∧ walk s t
1

= Pair t1a t1d ∧
walk s t

2
= Pair t2a t2d ∧

tunify_tupled_aux uR (s,t1a,t2a) = SOME sx ⇒
uR (sx ,t1d,t2d) (s,t

1
,t

2
)

Proof. From the lemmas above.

5 Unification: Correctness

There are three parts to the correctness statement:

– If unify succeeds then its result is a unifier.
– If unify succeeds then its result is most general.
– If there exists a unifier of s ⊲ t

1
and s ⊲ t

2
, then unify s t

1
t
2
succeeds.

It is not generally true that the result of unify is idempotent. But unify pre-
serves well-formedness, which (as per Lemma 4) ensures the well-formed result
can be collapsed into an idempotent substitution.

A substitution s is a unifier of terms t1 and t2 if s ⊲ t
1

= s ⊲ t
2
.

Theorem 2. The result of unify is a unifier and a well-formed extension

⊢ ∀ s t
1

t
2

sx .
wfs s ∧ unify s t

1
t
2

= SOME sx ⇒
wfs sx ∧ s ⊑ sx ∧ sx ⊲ t

1
= sx ⊲ t

2

As sx is an extension of the input s, we can equally regard unify as calcu-
lating a unifier for the terms-in-context s ⊲ t

1
and s ⊲ t

2
.

Proof. The first two conjuncts, that s is a sub-map of sx and sx is well-formed,
are corollaries of Lemma 11. Essentially, unify only updates the substitution,
and then only with variables that aren’t already in the domain.

The rest follows by recursion induction on unify, using Lemma 13 (below),
which states that applying a sub-map of a substitution, and then the larger
substitution, is the same as simply applying the larger substitution on its own.

Lemma 13. walk* over a sub-map

⊢ s ⊑ sx ∧ wfs sx ⇒ sx ⊲ t = sx ⊲ (s ⊲ t)

Corollary 2. walk* with a fixed substitution is idempotent

The context provided by the input substitution is relevant to our notion of a
most general unifier, which differs from the usual context-free notion. A unifier of
terms in context is most general if it can be composed with another substitution
to equal any other unifier in the same context. In the empty context, however,
the notions of most general unifier coincide.

Lemma 14. The result of unify is most general (in context)

⊢ ∀ s t
1

t
2

sx s
2
.

wfs s ∧ unify s t
1

t
2

= SOME sx ∧ wfs s
2
∧

s
2

⊲ (s ⊲ t
1
) = s

2
⊲ (s ⊲ t

2
) ⇒

∀ t. s
2

⊲ (sx ⊲ t) = s
2

⊲ (s ⊲ t)

Theorem 3. The result of unify is most general (empty context)

⊢ unify FEMPTY t
1

t
2

= SOME sx ⇒
∀ s. wfs s ∧ s ⊲ t

1
= s ⊲ t

2
⇒ ∃ s ′. ∀ t. s ′ ⊲ (sx ⊲ t) = s ⊲ t

Remark 1. By the lemma above we see that the witness is s itself.

We can give a fuller account of non-empty contexts by defining a notion
of “compatibility”. A substitution s is compatible with s0 (written s ⋑ s

0
) if

applying s0 before applying s is the same as just applying s. In other words, s0
is more general than s: the information in s0 is present in s, but s may include
more. It would be simpler to say that substitutions are compatible if the second
is a sub-map of the first, but we use the weaker notion of compatibility to allow
pairs of substitutions that bind variables in the opposite directions (v to u rather
than u to v, say), which could not be sub-maps, but which may be compatible.

Definition 9. Compatibility of substitutions

s ⋑ s
0
⇐⇒ wfs s ∧ wfs s

0
∧ ∀ t. s ⊲ (s

0
⊲ t) = s ⊲ t

Property 1. Compatible means more specific

⊢ s ⋑ s
0
⇐⇒

wfs s ∧ wfs s
0
∧

∀ t
1

t
2
. s

0
⊲ t

1
= s

0
⊲ t

2
⇒ s ⊲ t

1
= s ⊲ t

2

Property 2. Extensions are compatible

⊢ wfs sx ∧ s ⊑ sx ⇒ sx ⋑ s

Lemma 15. The kind of extensions made by unify preserve compatibility

⊢ sx ⋑ s ∧ wfs (s |+ (vx ,tx)) ∧ vx /∈ FDOM s ∧
sx ⊲ Var vx = sx ⊲ tx ⇒
sx ⋑ s |+ (vx ,tx)

Lemma 16. A variable occurring in a pair will walk* to a term smaller than
the pair in a compatible substitution

⊢ oc s (Pair t
1

t
2
) v ∧ sx ⋑ s ⇒

measure (term_depth ◦ walk* sx) (Var v) (Pair t
1

t
2
)

Theorem 4. The result of unify is compatible under any other unifier

⊢ ∀ s t
1

t
2

sx .
sx ⋑ s ∧ sx ⊲ t

1
= sx ⊲ t

2
⇒

∃ si. unify s t
1

t
2

= SOME si ∧ sx ⋑ si

Since compatibility is reflexive, we get the third part of our specification as a
special case of this theorem.

Proof. By recursion induction on unify, using Lemma 15, and using Lemma 16
in the pair case.

6 Nominal Unification

Nominal terms extend first-order terms with two new constructors, one for names
(also called atoms), and one for ties, which represent binders (terms with a bound
name). We also replace the Var constructor with a constructor for suspensions,
the nominal analogue of variables. A suspension is made up of a variable name
and a permutation of names, and stands for the variable after application of the
permutation. When (if) the variable is bound, the permutation can be applied
further.

Definition 10. Concrete nominal terms

datatype Cterm
= CNom of string

| CSus of (string, string) alist ⇒ num

| CTie of string ⇒ Cterm

| CPair of Cterm ⇒ Cterm

| CConst of const

We represent permutations as lists of pairs of names; such a list stands for
a ordered composition of swaps, with the head of list applied last. There may
be more than one list representing the same permutation. We abstract over
these different lists by creating a quotient type. The nominal term data type
is the quotient of the concrete type above by permutation equivalence (==).
Constructors in the quotient type are the same as in the concrete type but with
the C prefix removed.

Following the example of the first-order algorithm, we begin by defining the
“walk” operation that finds a suspension’s ultimate binding:

Definition 11. Walking a suspension

wfs s ⇒
vwalk s π v =

case FLOOKUP s v of

SOME (Sus p u) → vwalk s (π ++ p) u
‖ SOME t → π • t
‖ NONE → Sus π v

The π ++ p term appends π and p, producing their composition; π • t is the
(homomorphic) application of a permutation to a term.

The termination argument for vwalk is the same as in the first-order case; the
permutation doesn’t play a part in the recursion. Nominal walk calls vwalk s p v
for a suspension Sus p v , otherwise returns its argument. Nominal walk* uses
walk as before, this time recursing on ties as well as pairs.

Nominal unification was first defined by Urban, Pitts, and Gabbay [11] to
work in two phases. In the first phase, a substitution is constructed along with
a set of freshness constraints (alternatively, a freshness environment). In [11],
the substitution is idempotent; ours will be triangular. A freshness constraint is

a pair of a name and a variable, expressing the constraint that the variable is
never bound to a term where the name is free.

The second phase of unification checks to see if the freshness constraints are
consistent, possibly dropping irrelevant constraints along the way. If this checking
succeeds, the substitution and the new freshness environment, which together
form a nominal unifier, are returned. Our definition of nominal unification differs
from this in a number of respects:

– it is written in accumulator-passing style, so takes a substitution and a fresh-
ness environment as input;

– the triangular substitution returned from the first phase must be referred to
as the freshness constraints are checked in the second phase; and

– the implementations of the two phases are written in a functional style,
making them directly implementable. This is in contrast with the rule-based
style of [11].

The final definition in HOL is thus:

Definition 12. Nominal unification in two phases

nunify (s,fe) t
1

t
2

=

do

(sx ,feu) ← unify (s,fe) t
1

t
2
;

fex ← verify_fcs feu sx ;
SOME (sx ,fex)

od

In both phases, we use the auxiliary term_fcs. This function is given a name
and a term, and constructs a minimal freshness environment sufficient to ensure
that the name is fresh for the term. If this is impossible (i.e., if the name is free
in the term), term_fcs returns NONE.

Following our strategy in the first-order case, unify is defined via a total
function tunify. The pair and constant cases are unchanged, and names are
treated as constants. With suspensions, there is an extra case to consider: if the
variables are the same, we augment the freshness environment with a constraint
(a,s ⊲ Sus [] v) for every name a in the disagreement set of the permutations
(done by unify_eq_vars). In the other suspension cases, we apply the inverse
(reverse) of the suspension’s permutation to the term before performing the
binding (done in add_bdg). (We invert the permutation so that applying the
permutation to the term to which the variable is bound results in the term with
which the suspension is supposed to unify.)

In the Tie case, a simple recursive descent is possible when the bound names
are the same. Otherwise, we ensure that the first name is fresh for the body of
the second term, and swap the two names in the second term before recursing.

Definition 13. Phase 1 (total version)

add_bdg π v t
0

(s,fe) =

(let t = π−1
• t

0
in

if oc s t v then NONE else SOME (s |+ (v,t),fe))
⊢ tunify (s,fe) t

1
t
2

=

if wfs s then

case (walk s t
1
,walk s t

2
) of

(Nom a
1
,Nom a

2
) →

if a
1

= a
2

then SOME (s,fe) else NONE

‖ (Sus π
1

v
1
,Sus π

2
v
2
) →

if v
1

= v
2

then

unify_eq_vars (dis_set π
1

π
2
) v

1
(s,fe)

else

add_bdg π
1

v
1

(Sus π
2

v
2
) (s,fe)

‖ (Sus π
1

v
1
,t

2
) → add_bdg π

1
v
1

t
2

(s,fe)
‖ (t

1
,Sus π

2
v
2
) → add_bdg π

2
v
2

t
1

(s,fe)
‖ (Tie a

1
t
1
,Tie a

2
t
2
) →

if a
1

= a
2

then

tunify (s,fe) t
1

t
2

else

do

fcs ← term_fcs a
1

(s ⊲ t
2
);

tunify (s,fe ∪ fcs) t
1

([(a
1
,a

2
)] • t

2
)

od

‖ (Pair t1a t1d,Pair t2a t2d) →
do

(sx ,fex) ← tunify (s,fe) t1a t2a;
tunify (sx ,fex) t1d t2d

od

‖ (Const c
1
,Const c

2
) →

if c
1

= c
2

then SOME (s,fe) else NONE

‖ _ → NONE

else

ARB

Phase 2 is implemented by verify_fcs, which calls

term_fcs a (s ⊲ Sus [] v)

for each constraint (a, v) in the environment, accumulating the result.

Termination The termination argument for phase 1 is analogous to the termi-
nation argument for unify in the first-order case. We use the same termination
relation (this time measuring nominal term depth, and ignoring the freshness en-
vironment). The extra termination condition for recursion down a Tie is handled
like the easier of the Pair conditions because the substitution doesn’t change
and the freshness environment is irrelevant to termination.

Termination for phase 2 depends only on the freshness environment being
finite. We assume the freshness environment is finite in all valid inputs to nunify,
and it’s easy to show that term_fcs (and hence phase 1) preserves finiteness by
structural induction on the nominal term.

6.1 Correctness

In the first-order case, unified terms are syntactically equal. In the nominal case,
unified terms must be α-equivalent with respect to a freshness environment. For
example, (λa.X) and (λb.Y) unify with X bound to (a b) · Y (the substitution),
but only if a#Y (the freshness environment). In the absence of the latter, one
might instantiate Y with a, and therefore X with b, producing non-equivalent
terms.

Thus, our first correctness result depends on the definition of α-equivalence
with respect to a freshness environment (equiv).

Lemma 17. The freshness environment computed by unify_eq_varsmakes the
suspensions equivalent

⊢ wfs s ∧
unify_eq_vars (dis_set π

1
π
2
) v (s,fe) = SOME (s,fcs) ⇒

equiv fcs (s ⊲ Sus π
1

v) (s ⊲ Sus π
2

v)

Lemma 18. verify_fcs in an extended substitution preserves equivalence

⊢ equiv fe (s ⊲ t
1
) (s ⊲ t

2
) ∧ wfs sx ∧ s ⊑ sx ∧ FINITE fe ∧

verify_fcs fe sx = SOME fex ⇒
equiv fex (sx ⊲ t

1
) (sx ⊲ t

2
)

Lemma 19. The result of verify_fcs in a sub-map can be verified in the ex-
tension

⊢ verify_fcs fe s = SOME ve
0
∧ verify_fcs fe sx = SOME ve ∧

s ⊑ sx ∧ wfs sx ∧ FINITE fe ⇒
verify_fcs ve

0
sx = SOME ve

Corollary 3. verify_fcs with a fixed substitution is idempotent.

Theorem 5. The result of nunify is a unifier, the freshness environment is
finite, and the substitution is a well-formed extension

⊢ ∀ s fe t
1

t
2

sx fex .
wfs s ∧ FINITE fe ∧ nunify (s,fe) t

1
t
2

= SOME (sx ,fex) ⇒
FINITE fex ∧ wfs sx ∧ s ⊑ sx ∧
equiv fex (sx ⊲ t

1
) (sx ⊲ t

2
)

Proof. By recursion induction on unify using the lemmas above.

The other correctness results have not yet been proved.

7 Related Work

Robinson’s recursive descent algorithm traditionally takes two terms as input
and produces an idempotent most general unifier on success. This algorithm has
been mechanised elsewhere in an implementable style (e.g., by Paulson [12]).
McBride [13] shows that the algorithm can be structurally recursive in a depen-
dently typed setting, and formalises it this way using LEGO. McBride also points
to many other formalisations. The other main approach to the presentation and
formalisation of unification algorithms is the Martelli-Montanari transformation
system, introduced in [1]. Ruiz-Reina et al. [14] formalise a quadratic unifica-
tion algorithm (using term graphs, due to Corbin and Bidoit) in ACL2 in the
transformation style.

Urban et al. [11] formalise nominal unification in Isabelle/HOL in transfor-
mation style. Nominal unification admits first-order unification as a special case,
so this can also be seen as a formalisation of first-order unification. Much work on
implementing and improving nominal unification has been done by Calvès and
Fernández. They implemented nominal unification [15] and later proved that the
problem admits a polynomial time solution [4] using graph-rewriting.

8 Conclusion

This paper has demonstrated that the pragmatically important technique of the
triangular substitution is amenable to formal proof. Unification algorithms using
triangular substitutions occur in the implementations of logical systems, and are
thus of central importance. We have shown correctness results for unification
algorithms in this style, both for the traditional first-order case, and for nominal
terms.

Future Work Persistence is one of the benefits of using triangular substitu-
tions. There are imperative unification algorithms (such as those in the style of
Huet [2]) with much better time complexity than Robinson’s that use ephemeral
data structures. Conchon and Filliâtre [16] have shown that Tarjan’s classic
union-find algorithm can be transformed into one using persistent data struc-
tures. It would be interesting to see if similar ideas can be applied to an im-
perative unification algorithm; indeed some unification algorithms make use of
union-find.

The walk-based substitution application algorithms in this paper can benefit
from sophisticated representations of substitutions, as well as from optimiza-
tions to the walk algorithm itself. We have done some work on formalising the
improvements to walk described by Byrd [8]. Future work includes continuing
this formalisation and also investigating representations of triangular substitu-
tions other than the obvious lists.

The Martelli-Montanari transformation system has become a standard plat-
form for presenting unification algorithms, but wasn’t immediately applicable
for us because it assumes idempotent substitutions are used. However it may

be possible to create a transformation system based on triangular substitutions,
and it would be interesting to see how it relates to the usual system.

In this paper we formalised the original, inefficient presentation of nominal
unification from [11]. The improved nominal unification algorithms by Calvès
and Fernández should also be formalised.

References

1. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems 4(2) (1982) 258–282

2. Huet, G.: Résolution d’équations dans des langages d’ordre 1, 2, ... ω. Thèse d’état,
Université de Paris VII, Paris, France (1976)

3. Paterson, M.S., Wegman, M.N.: Linear unification. Journal of Computer and
System Sciences 16 (1978) 158–167

4. Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theoret-
ical Computer Science 403(2-3) (2008) 285–306

5. Hoder, K., Voronkov, A.: Comparing unification algorithms in first-order theorem
proving. In Mertsching, B., Hund, M., Aziz, M.Z., eds.: KI 2009: Advances in Ar-
tificial Intelligence, 32nd Annual German Conference on AI, Paderborn, Germany,
September 15-18, 2009. Proceedings. Volume 5803 of Lecture Notes in Computer
Science., Springer (2009) 435–443

6. Baader, F., Snyder, W.: Unification theory. In Robinson, A., Voronkov, A., eds.:
Handbook of Automated Reasoning. Volume I. Elsevier Science (2001) 445–532

7. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. The MIT Press
(2005)

8. Byrd, W.E.: Relational Programming in miniKanren: techniques, applications, and
implementations. PhD thesis, Indiana University (2009)

9. Cheney, J., Urban, C.: Alpha-prolog: A logic programming language with names,
binding, and alpha-equivalence. In Demoen, B., Lifschitz, V., eds.: Logic Pro-
gramming, 20th International Conference. Volume 3132 of LNCS., Springer (2004)
269–283

10. Byrd, W.E., Friedman, D.P.: alphaKanren: A fresh name in nominal logic pro-
gramming languages. Scheme and Functional Programming (2007)

11. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer
Science 323(1-3) (2004) 473–497

12. Paulson, L.C.: Verifying the unification algorithm in LCF. Science of Computer
Programming 5(2) (June 1985) 143–169

13. McBride, C.: First-order unification by structural recursion. Journal of Functional
Programming 13(6) (2003) 1061–1075

14. Ruiz-Reina, J.L., Mart́ın-Mateos, F.J., Alonso, J.A., Hidalgo, M.J.: Formal cor-
rectness of a quadratic unification algorithm. Journal of Automated Reasoning
37(1) (August 2006) 67–92

15. Calvès, C., Fernández, M.: Implementing nominal unification. Electronic Notes in
Theoretical Computer Science 176(1) (2007) 25–37

16. Conchon, S., Filliâtre, J.C.: A persistent union-find data structure. In Russo,
C., Dreyer, D., eds.: Proceedings of the ACM Workshop on ML, 2007, Freiburg,
Germany, October 5, 2007, ACM (2007) 37–46

