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Abstract Adequacy is an important criterion for judging whether a formalization
is suitable for reasoning about the actual object of study. The issue is particularly
subtle in the expansive case of approaches to languages with name-binding. In prior
work, adequacy has been formalized only with respect to specific representation
techniques. In this article, we give a general formal definition based on model-
theoretic isomorphisms or interpretations. We investigate and formalize an adequate
interpretation of untyped lambda-calculus within a higher-order metalanguage in
Isabelle/HOL using the Nominal Datatype Package. Formalization elucidates some
subtle issues that have been neglected in informal arguments concerning adequacy.
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1 Introduction

The right choice of representation is often the key to success in formal or machine-
checked reasoning. A change in representation may make formal, machine-checked
proof much easier, but also introduces an additional burden of proof to legitimize
reasoning about an object via its representation. The representation must correctly
capture the salient properties of the original object of interest. In the context of
formal reasoning about languages with name-binding, this correspondence is some-
times called adequacy. Reasoning about languages with name-binding, equivalence
modulo consistent renaming of bound names (α-equivalence), and capture-avoiding
substitution directly is challenging, and there has been extensive exploration of alter-
native representations. The term “adequacy” was first used to refer to a desired cor-
respondence between an object language and its representation by Harper, Honsell
and Plotkin in their seminal work on the higher-order, dependently-typed Logical
Framework (LF) [10]. However, as Crary and Harper have pointed out, adequacy
is just as important for other formalisms for reasoning about abstract syntax with
binding [6].

Adequacy for representations of languages with name-binding is challenging for
several reasons. First, a plethora of techniques for representing and reasoning about
name-binding and α-equivalence have been introduced, each with different advan-
tages, disadvantages, and caveats. Second, adequacy apparently cannot be proved
once and for all, even for a given representational technique. Instead, it seemingly
needs to be revisited whenever a new programming language calculus or logic is de-
veloped. Third, adequacy proofs are tiresome and are often omitted or conducted on
paper using informal approaches to name-binding; thus, they share the well-known
disadvantages of paper-and-pencil syntactic proofs. Finally, there remains confusion
about the meaning of the term “adequacy” with respect to different representation
techniques.

To date the term “adequacy” has mainly been used in the context of higher-order
abstract syntax techniques. However, none of this work has provided a clear, general
definition of adequacy that is applicable to any representation technique; rather,
particular instances of correspondences between object-languages and higher-order
abstract syntax representations are typically called adequacy theorems. This has led
to confusion between researchers familiar with different techniques, since properties
such as “compositional bijection” that are called adequacy theorems in (for example)
LF [10–12, 18] are couched in terms of LF or higher-order abstract syntax and
bear little superficial resemblance to correctness properties established for other
techniques [7, 8, 17, 20].

Because adequacy proofs for higher-order abstract syntax (like most proofs
involving informal reasoning about languages with name-binding) are seldom pub-
lished in full detail, some researchers (including the authors) have remained un-
persuaded that these informal proofs have uncovered and addressed all pertinent
issues. Conversely, some researchers [6] have criticized other techniques, suggesting
that their correctness may be in doubt because properties resembling LF adequacy
theorems have not been proved for them. As a matter of public record, such doubts
have remained speculative in nature and, to date, no concrete shortcomings have
been identified or articulated. Moreover, discussion of these problems has been
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Formalizing Adequacy 211

inconclusive, in part because there is no general, representation-independent de-
finition of adequacy that is widely accepted.

We wish to distinguish two possible senses of the term “adequacy” which appear
to have been conflated. By informal adequacy we mean that the formalization of
a mathematical object matches a person’s informal understanding of the object.
Informal mathematical concepts are sometimes ambiguous or subjective, so informal
adequacy is in general a subjective judgment. Informal adequacy is neither provable
nor falsifiable by formal means: we cannot formally prove a relationship between
an informal notion and a proposed formalization without introducing some new
formalism whose (informal) adequacy could also be disputed. Informal adequacy is
a rhetorical claim, outside the scope of mathematical reasoning.

Conversely, we use the term formal adequacy to describe a formalized relationship
between two candidate formalizations of an object language (e.g., isomorphism with
respect to a precisely defined mathematical structure). Formal adequacy cannot
guarantee informal adequacy. However, it is at least reassuring if we can prove that
a novel representation is equivalent to a well-understood, conventional one. Over
time, we may thereby establish that many distinct formal presentations of a single
informal (but important) object, such as the lambda-calculus, are all mutually equiv-
alent [17]. The more formalizations that are equivalent, the more disconcerting it is if
one is not; even if only two candidate formalizations exist, the absence of a provable
link connecting them is cause for concern. Formal adequacy is not a matter of spec-
ulation but a mathematical claim that is subject to proof or disproof: in principle, it
can be analyzed within a machine-checked logic. We will concentrate on formalizing
adequacy in this sense and henceforth, we will use the term “adequacy” only in the
formal sense.

1.1 Prior Work

In higher-order abstract syntax (HOAS), as supported in the LF [10] or higher-
order logic programming [14] paradigms, a representation is usually considered
adequate with respect to an object language (equipped with a suitable notion of
substitution) provided there exists a bijection from the object-language terms to
meta-language terms of an appropriate type that is compositional in the sense that the
object-language substitution maps to metalanguage substitution. Proving adequacy
properties for higher-order representations requires first establishing that meta-
language terms have unique β-normal, η-long canonical forms, and once this is done,
showing that a given encoding function is bijective and compositional. The necessary
canonicalization properties for LF were studied by Harper and Pfenning [12]. The
literature contains many proof sketches and some detailed proofs of ad hoc adequacy
theorems [10–12, 18] for various object languages. Gardner [9] investigated the
problem of relating object-language terms and logical derivations with their LF
representations more systematically using indexed isomorphisms. To our knowledge
none of these adequacy proofs for higher-order abstract syntax have been mechani-
cally formalized (aside from the partial formalization by Urban et al. [23]).

The most rigorous treatments of adequacy for HOAS are due to Harper and
Pfenning [12, Section 7] and Harper and Licata [11, Section 3]. Urban et al. [23]
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formalized much of Harper and Pfenning’s development in Nominal Isabelle/HOL,
including the simple adequacy results sketched in Section 7 of that article. Our proof
draws in part on ideas in that work, but we define encodings via functions rather
than relations, and we investigate adequacy for judgments as well as the object
language syntax. On the other hand, we focus on a simply-typed HOAS language
rather than full dependently-typed LF. Harper and Licata [11] pursue an alternative
approach to adequacy using a system called Canonical LF in which every expression
is maintained in β-normal, η-long (or canonical) form. This is believed to ease rea-
soning about adequacy because we no longer need to reason modulo βη-equivalence;
instead, we can inspect the structure of canonical forms. However, this canonical-
forms invariant is maintained using an auxiliary notion, called hereditary substitution
(introduced by Watkins et al. [24]). As discussed further below, hereditary sub-
stitution cannot be formalized easily within most proof assistants. To our knowl-
edge, the key properties of Canonical LF have never been mechanically checked
because of this complication.

There appears to be little agreement as to how to define adequacy for other
representations, possibly because of the absence of a clear and general definition of
adequacy for higher-order abstract syntax itself. There are some treatments of cor-
rectness properties for other techniques besides LF, notably Crole’s [7] development
of adequacy for the Hybrid system, Norrish and Vestergaard’s [17] formalization
of isomorphisms among nominal and de Bruijn representations of the untyped λ-
calculus, and Urban’s isomorphism between raw and nominal representations of the
λ-calculus [21, Section 3]. Cheney and Urban [3, Section 5] also discuss adequacy in
the context of nominal logic programming. As far as we know, of these only Urban’s
and Norrish and Vestergaard’s work has been mechanically formalized.

1.2 Our Approach

We argue that the purpose of adequacy is to legitimize reasoning about one
(mathematical or formal) structure by reasoning about another. Standard model-
theoretic notions such as isomorphism or interpretation capture this notion in an
abstract way [13]. In this article, we consider a class of adequacy properties based
on interpretations among appropriate mathematical structures. This approach to
adequacy generalizes that taken in the LF setting, and provides a clear recipe for
studying adequacy that is largely independent of syntactic idiosyncrasies of the object
and meta-languages, such as the treatment of variables, contexts, substitution and
α-equivalence.

Our approach to formalizing adequacy for higher-order abstract syntax is based
on explicitly establishing a canonical-forms theorem and then reasoning about the
canonical forms, rather than maintaining canonical forms using hereditary substitu-
tion. While hereditary substitution appears to simplify adequacy proofs on paper,
it cannot be defined as a primitive recursive function in (the current version of)
Nominal Isabelle; instead, we need to define it as a relation. We have explored
this alternative, and found that relational reasoning about substitution dramatically
increases the amount of work needed for each proof. Many inference steps that can
be handled automatically by equational simplification would have to be performed
explicitly, one step at a time. There may be a way around this, but in this article we
chose to focus on the better-understood approach based on ordinary substitution and
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Formalizing Adequacy 213

canonicalization, and leave formalizing Canonical LF and hereditary substitutions to
future work.

Our approach to canonical forms also draws upon some prior work on canonical
forms and equivalence checking in the λ-calculus. Coquand introduced an algorithm
for testing βη-convertibility, along with a proof technique based on Kripke logical
relations [4]. Crary [5] and Harper and Pfenning [12] give type-directed variants of
Coquand’s algorithm for testing convertibility in simple type theory and LF respec-
tively. Canonical forms can then be extracted from algorithmic equivalence deriva-
tions. Correctness proofs for the type-directed algorithms have been formalized
by Narboux and Urban [16] and Urban et al. [23] respectively. For our purposes,
however, it is more convenient to prove soundness and completeness of a canonical-
ization algorithm directly (see Appendix).

Verifying adequacy does not seem inherently difficult, but is tedious and must
currently be redone for each new representation. Instead of doing this on a case-by-
case basis, we are investigating fundamental principles for systematically reasoning
about adequacy. For the moment, the extant case studies can only suggest certain
general principles. We leave their further investigation and codification to future
work.

1.3 Summary

The contributions of this article are as follows:

1. We propose a clear, general, and formal characterization of adequacy as the ex-
istence of a model-theoretic interpretation [13] of the object-language within the
meta-language. This definition is independent of inessential details of particular
representation techniques and, in principle, applicable to any combination of
object-language, representation technique, and formal framework.

2. We formalize an adequate interpretation of the untyped λ-calculus with reduc-
tion using a higher-order metalanguage, within Isabelle/HOL and the Nominal
Datatype Package [21]. In doing so, we also prove the properties that are typi-
cally called “adequacy theorems” for such systems. To our knowledge, this is the
first mechanized formalization and proof of such results for a higher-order ab-
stract syntax representation.

This work extends the existing body of evidence that these and many other for-
malisms correctly capture the “real” λ-calculus (see Norrish and Vestergaard [17]
for a more complete discussion of such results). Our formalization also includes re-
usable results such as the canonicalization theorem, and elucidates the patterns of
reasoning that arise in adequacy proofs. This constitutes a library of useful results
and a model proof of adequacy that may be extended or adapted to study adequacy
for other languages, or as a starting point for improving support for automating such
proofs.

We employ a metalanguage called λHO, a simply-typed λ-calculus that supports
higher-order abstract syntax, and a logic called λHO⇒ (based on uniform, focused proof
search in higher-order logic programming [15]) that can be used to define relations
on higher-order representations (Section 2). We next introduce an object language,
the (standard) untyped λ-calculus with β-reduction, and review its representation
in λHO. Section 3 presents our approach to adequacy using concepts from model
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theory, specifically interpretations. In Section 4, we show the central canonical-forms
property for λHO, establishing that βη-equivalence classes are represented by unique
canonical forms. We establish the main adequacy result in Section 5. In Section 5.1,
we define the encoding function mapping object language terms to λHO terms, and
establish the critical injectivity, surjectivity and compositionality properties of the
encoding. Finally, in Section 5.2 we show that the encoding function preserves and
reflects reduction. This is the most subtle aspect of the development and, to the best
of our knowledge, comparable results have not previously been formalized within a
machine-checked logic.

Every mathematical statement in this article except for Theorem 1 (a standard
result of model theory, and not central to our development) has been formalized and
proved using Nominal Isabelle. We follow the usual informal conventions concerning
α-equivalence, but these are treated rigorously in the Nominal Isabelle formalization.
In particular, to aid readability we have suppressed explicit mention of freshness and
context-validity side-conditions whenever convenient. The full statements and proofs
can be found in the formalization, which is available upon request.

2 Background

We take as our meta-language a simply-typed λ-calculus with constants, called λHO.
The syntactic classes include expressions M, N, types τ , and contexts � generated by
the following grammar:

M, N ::= c | x | M N | �x.N τ ::= a | τ → τ ′ � ::= • | �, x:τ

where x denotes one of a fixed infinite set of variables, c denotes one of a fixed set of
constants, and a denotes one of a set of base types. To minimize confusion, we write
�x.M for meta-language λ-abstraction.

The (standard) definitions of the free variables function FV(−), well-formedness
judgment � � M : τ , and substitution operation M{N/x} are shown in Fig. 1. The
typing judgment � � M : τ is implicitly parameterized by a signature 	 consisting of
bindings c : τ of constants to their types, such that for each c there is at most one
τ such that c : τ ∈ 	. Similarly, we restrict attention to contexts � that bind each
variable at most once.

Fig. 1 The meta-language λHO: a simply-typed λ-calculus with constants
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Formalizing Adequacy 215

The typing judgment satisfies standard weakening and substitution properties:

Proposition 1 (Properties of typing)

1. (Weakening) If � ⊆ �′ and � � M : τ then �′ � M : τ .
2. (Substitution) If �, x:τ ′ � M : τ and � � N : τ ′ then � � M{N/x} : τ .

2.1 Definitional Equivalence

Meta-language expressions are considered equivalent modulo β and η-conversion.
To be precise, we use a typed def initional equivalence judgment � � M = N : τ

(Fig. 2) to identify when two expressions are βη-convertible in a given context.
Definitional equivalence is only derivable for well-typed terms, and satisfies weak-
ening, substitution, and other standard properties:

Proposition 2 (Properties of definitional equivalence)

1. (Validity) If � � M = N : τ then � � M : τ and � � N : τ .
2. (Ref lexivity) If � � M : τ then � � M = M : τ .
3. (Weakening) If � ⊆ �′ and � � M = N : τ then �′ � M = N : τ .
4. (Substitution) If �, x:τ ′ � M = M′ : τ and � � N : τ ′ then � � M{N/x} =

M′{N/x} : τ .
5. (Functionality) If �, x:τ ′ � M = M′ : τ and � � N = N′ : τ ′ then � � M{N/x} =

M′{N′/x} : τ .

2.2 A Higher-order Meta-logic

Besides the meta-language itself, we employ a simple logic that can be used to define
relations over meta-language terms. We introduce a type constant o standing for the
type of propositions. Propositions φ,ψ are expressions of the following forms:

φ,ψ ::= A | φ ⊃ ψ | �x:τ.φ

Here, A is an object-language term that is being used as an atomic formula, and we
use the notation φ ⊃ ψ for implication and �x:τ.φ for universal quantification in

Fig. 2 Definitional equivalence for λHO
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Fig. 3 Well-formed formulas of the meta-logic λHO⇒

λHO⇒ . To simplify matters, we will not consider λ-abstraction or βη-conversion at the
level of propositions.

We introduce a simple meta-logic that can be used to define relations over λHO

terms. The well-formed formulas in a context � are defined in Fig. 3. We consider
theories  to be sets of formulas. The judgments are �; =⇒ φ, which says that
φ is derivable in context � using theory , and �;  | φ −→ A, which says that
atomic formula A is immediately derivable from φ in context � under assumptions
. The rules for derivability are given in Fig. 4. This system allows relations to be
defined as simple higher-order logic programs. It is based on systems for uniform and
focused proofs that have been investigated for higher-order logic programming [15].
Essentially, the idea is that we start with a cut-free, Gentzen-style sequent calculus.
We then require right-rules to be applied first whenever the conclusion is non-atomic.
When the conclusion is atomic, we select a hypothesis φ ∈  and proceed by applying
left-rules to the focused formula φ to break it down into subgoals.

We have chosen to take the cut-free, uniform, focused proof search system as
primitive rather than devote additional effort to formalizing cut-elimination and
proof normalization results. These results are interesting and appear nontrivial to
formalize, but they are generally well-understood and this issue seems orthogonal to
the goals of this article. LF signatures can also be viewed as a form of higher-order
logic programs, and this meta-logic is also closely related to canonical derivations in
LF, so we believe that adequacy proofs based on this system could be adapted to
handle LF as well.

Proposition 3 (Properties of well-formed formulas)

1. If � ⊆ �′ and � � φ prop then �′ � φ prop.
2. If �;  =⇒ A and � � A = A′ : o then �; =⇒ A′.
3. If �;  | φ −→ A and � � A = A′ : o then �; | φ −→ A′.

We can also establish that λHO⇒ is closed under definitional equivalence of formulas
and theories (suitably defined), but we do not need this result in the rest of the article.

Fig. 4 Derivability in the meta-logic λHO⇒
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Fig. 5 The object-language L: untyped λ-calculus with β-reduction

2.3 The Object Language, and its Representation

We take the untyped λ-calculus with β-reduction as our object language. We consider
terms t, u generated by the grammar:

t ::= x | t u | λx.t

We assume familiarity with the (standard) definitions of the free variables function
fv(−), the substitution operation t[u/x], and the β-reduction relation shown in Fig. 5.
We write L for the set of closed untyped λ-terms.

In Fig. 6, we show the representation of the object language in λHO, defined using
a signature 	L defining constants for λ-abstraction and application, and a theory L
axiomatizing β-reduction on meta-language terms. This representation is essentially
the standard higher-order representation of this object language afforded by LF or
λProlog; it differs from typical presentations in these systems only in syntactic details.
For example, we write the rule for β-reduction under a λ-abstraction as:

�M, N : exp → exp.
(
�x : exp.M x ���β N x

) ⊃ lam M ���β lam N

and the same rule would be written in Twelf or λProlog concrete syntax as:

% Twelf
red_lam : red (lam M) (lam N) <- {x} red (M x) (N x).

% lambdaProlog
red (lam M) (lam N) :- pi x. red (M x) (N x).

Fig. 6 Signature and theory representing the object language
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2.4 Formalization in Nominal Isabelle

In this article, we prefer to focus on the high-level structure of the proof, which we
believe could in principle be redone in any sufficiently rich mechanized logic, and
leave out most of the details of formalization that are specific to Nominal Isabelle.
The translation from the informal mathematical notation used in the article and the
formalization is straightforward, using the same principles illustrated in Urban [21]
and Urban et al. [23]. In particular, we make free use of “nominal primitive
recursion” and “strong induction principles” (described comprehensively in [20–22])
for nominal datatypes and inductive definitions without further comment, except
to emphasize when such principles are especially useful (for example in avoiding
variable capture). The reader interested in understanding the nuts and bolts of
formalizing adequacy in Nominal Isabelle is invited to consult the formalization and
related articles.

3 Adequacy and Interpretations

Adequacy formalizes an intuition that the object language and reduction relation are
correctly represented by the higher-order signature and theory. What does this mean
exactly? Much work on adequacy for LF asserts that adequacy means showing that
the object language is isomorphic to its representation. However, this guideline does
not explain why the isomorphism is needed or identify which mathematical structure
the isomorphism should preserve. If, as we argued earlier, the purpose of adequacy
is to legitimize reasoning about the object language that is actually performed on
the meta-level representation, then adequacy should ensure that properties of the
object-language correspond to properties of the meta-language.

For concreteness, we use the language of first-order logic and model theory [13]
to talk about the object language, meta-language and their properties; other logics
could also be considered. We recapitulate some standard elements of first-order
model theory [13]. A first-order structure A over a relational signature � = {R1 :
k1, . . . , Rn : kn} consists of a carrier set A together with an k-ary relation RA ⊆ Ak

for each k-ary relation symbol R : k ∈ �. In what follows, we often abuse notation
by writing A for both a structure and its carrier set. Two first-order structures over
a common signature are elementarily equivalent if they satisfy the same first-order
sentences. An isomorphism of first-order structures A, B over the same signature �

is a bijection h : A → B such that for RA(a1, . . . , an) ⇐⇒ RB(h(a1), . . . , h(an)) for
each R : n ∈ � and a1, . . . , an ∈ A.

It is a standard result that isomorphic structures are elementarily equivalent [13];
hence, their properties transfer in both directions via the identity translation. How-
ever, elementarily equivalence does not imply isomorphism; for example, Q and R

satisfy the same sentences over <. We argue that the essence of adequacy is the
ability to translate properties of the object language to equivalent properties of the
meta-language. Thus, existence of an isomorphism is a sufficient, but not necessary
criterion for adequacy. Moreover, it is often inconvenient to work with isomorphisms
of structures over a common signature, because doing so requires constructing a
subset type and quotienting with respect to definitional equivalence. Working with
equivalence classes and quotient constructions is often painful in a mechanical
formalization (including in Nominal Isabelle). Hence, we prefer to work with a more
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general notion called interpretation (see for example Hodges [13]). Intuitively, an in-
terpretation is a relationship that shows that a structure of interest is isomorphic to a
(definable) part of another structure, possibly modulo some (definable) equivalence
relation. This implies, in particular, that any logically definable property of the object
structure can be translated to an equivalent definable property of the representing
structure.

We introduce a slightly different definition of interpretation than the standard
one in model theory [13]. Since we are working in Isabelle/HOL, we will define
interpretations in terms of HOL formulas and functions. We say that a HOL formula
over structure A with signature � is one whose (free and bound) variables range over
elements of A and whose atomic formulas are among those in �.

Definition 1 (Interpretation) Let A and B be first-order structures over relational
signatures � and �′ respectively. We say that A is interpretable in B if there exists:

1. A subset �A� : B → bool of B.
2. A binary relation ≡A: B × B → bool that is an equivalence relation on �A�.
3. For every n-ary relation symbol R : n ∈ �, a definable n-ary predicate �R� :

Bn → bool over �′.
4. A function �−� : A → �A� such that

(a) (Injectivity) For any a, a′ ∈ A, if �a� ≡A �a′� then a = a′.
(b) (Surjectivity) If b ∈ �A� then there exists a ∈ A such that �a� ≡A b .
(c) (Preservation and Reflection) If R ∈ � then (a1, . . . , an) ∈ R holds if and

only if (�a1�, . . . , �an�) ∈ �R�

If structure A over signature � is interpretable in structure B over signature �′
via �−�, we define the interpretation �P� of an �-formula P in B as:

��� = � �⊥� = ⊥
�P ∧ Q� = �P� ∧ �Q� �P ∨ Q� = �P� ∨ �Q�

�P ⇒ Q� = �P� ⇒ �Q� R(x1, . . . , xn) = �R�(x1, . . . , xn)

�∀x:A.P� = ∀x:�A�. �P� (= ∀x:B.x ∈ �A� ⇒ �P�)

�∃x:A.P� = ∃x:�A�. �P� (= ∃x:B.x ∈ �A� ∧ �P�)

Note in particular that this definition covers all cases since constants or function
symbols of type A cannot be mentioned in P, and that �P� is a �′-formula. The key
metatheorem about interpretability is that the preservation and reflection properties
can be lifted to arbitrary (higher-order) formulas over �.

Theorem 1 (Interpretability* (Theorem 4.3.1 of [13])) Suppose A is interpretable in
B. Let P be a formula over � whose variables are all of type A. Then

P(a1, . . . , an) ⇐⇒ �P�(�a1�, . . . , �an�)

We mark this theorem with an asterisk because we have not formalized it within
Isabelle/HOL (unlike the other results in the article). Indeed, the Interpretability
Theorem is a metatheoretic property about Isabelle/HOL formulas that cannot easily
be stated and proved within Isabelle/HOL. However, the real point of this meta-
theorem is that the ingredients of the definition of interpretation provide what is
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needed to prove any particular formula P equivalent to �P�; in principle, this proof
could be performed automatically for a given Isabelle/HOL formula P.

We will prove in Section 5 that:

Theorem 2 (Adequacy) The structure L over signature {−→β : 2}, def ined in Fig. 6,
consisting of the set of closed untyped λ-terms with β-reduction, is interpretable as the
set of closed λHO terms of type exp modulo def initional equivalence, with β-reduction
def ined via the λHO⇒ theory L.

Note that this statement is different from the usual statement of adequacy
theorems in LF (see for example [10–12, 18]): we restrict attention to closed terms
and we do not mention syntactic properties such as compositionality or substitution-
preservation explicitly. We have done so in order to provide a notion of adequacy
that is clean, high-level, and independent of syntactic details (e.g. variables). The
adequacy theorem above therefore only tells us that first-order properties of closed
object language terms can be translated to equivalent properties of closed meta-
language terms.

In fact, our results require showing analogous results for open terms, amounting to
proving the existence of an indexed interpretation, analogous to the indexed isomor-
phisms used by Gardner [9]. It should be possible to extend Theorem 1 to a richer
logic and thereby broaden the class of properties that can be transferred between
object and meta-language. However, we prefer to focus on the familiar first-order
setting.

We first present the components of the interpretation and sketch the proofs of
parts (1–3) of the definition of interpretation at a high level. These have also been
formalized, but we prefer not to burden the exposition with the relatively mundane
details.

The interpretation of closed object language terms is the set of well-formed terms
of type exp in the empty context (with respect to 	L):

�L� � {M | • � M : exp}
Likewise, the equivalence relation is definitional equivalence in the empty context
(again with respect to 	L):

(≡L) � {(M, N) | • � M = N : exp}
This is easily seen to be an equivalence relation on �L�, by properties already
established. Similarly, we will interpret the β-reduction relation −→β on closed terms
as follows:

(−→L
β ) �

{
(M, N) | •;L =⇒ M ���β N

}

The encoding function on elements of L is defined by primitive recursion over the
nominal datatype of object λ-terms:

�x� = x �t u� = app �t� �u� �λx.t� = lam (�x.�t�)

This function is defined for all object-language terms, open or closed. See Lemma 6
for the proof that the encoding function maps closed object terms to well-formed
closed λHO terms.
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In order to prove the injectivity, surjectivity, preservation and reflection prop-
erties, we will need to establish that λHO terms have unique canonical forms. We
therefore turn to this next before finishing the proof of adequacy in Section 5.

4 Canonical Forms

We define canonical forms informally to be higher-order terms that are β-normalized
and fully η-expanded—i.e., no η-expansions can be performed without introducing a
β-redex. Canonical and atomic forms obey the following grammar rules:

Mc ::= Ma | �x.Mc Ma ::= x | c | Ma Mc

We give rules for identifying canonical and atomic forms in Fig. 7. The judgment � �
M ⇑ τ says that M is a canonical form of type τ in context �, and likewise � � M ↓ τ

says that M is an atomic form of type τ with respect to �. Obviously, these rules are a
subsystem of those in Fig. 1. A canonical form of base type is an atomic form of that
type, whereas a canonical form of function type must be a �-abstraction whose body
is a canonical form of the result type. For example, the canonical forms of type exp
are of the form

ML, NL ::= x | app ML NL | lam (�x.ML)

This seems obvious, but it requires some work to prove this formally (we will return
to this point in Section 5).

In the rest of this section, we show that each well-formed λHO term is definitionally
equivalent to a canonical form; moreover, if two λHO terms are definitionally
equivalent then they have the same canonical form.

4.1 Weak Head Reduction

We will employ a (standard) weak head reduction relation M
whr−−→ N and weak head

normal forms predicate whnf(M), shown in Figs. 8 and 9 respectively. Here we state
and prove some properties of weak head reduction and weak head normal forms that
will be needed frequently, including subject reduction.

Proposition 4 (Properties of weak head reduction)

1. (Identity) (�x.M) x
whr−−→ M

2. (Determinacy) If M
whr−−→ M′ and M

whr−−→ M′′ then M′ = M′′.
3. (Substitution) If M

whr−−→ M′ then M{N/x} whr−−→ M′{N/x}.
4. For any M, we have whnf(M) if and only if � ∃M′.M whr−−→ M′.

Fig. 7 Canonical and atomic forms
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Fig. 8 Weak head reduction

Theorem 3 (Subject reduction) Assume M
whr−−→ N and � � M : τ . Then � � M =

N : τ and � � N : τ .

Proof Structural induction on the derivation of M
whr−−→ N, and case analysis on the

well-formedness derivation. ��

4.2 Canonicalization

The judgments for canonicalization are shown in Fig. 10. These rules, broadly,
canonicalize a (not necessarily well-formed) λHO term in a type-directed way by
η-expansion at function type, followed by weak head normalization at base type.
Once the term is in weak head normal form, we can use the auxiliary judgment � �
M ↓ N : τ to match the top portion of the weak head normalized term to its atomic
form, and recursively canonicalize the arguments.

We first establish some simple syntactic properties of canonicalization. Weakening
is standard and straightforward:

Lemma 1 (Weakening of canonicalization) Assume that � ⊆ �′. Then:

1. If � � M ↓ N : τ then �′ � M ↓ N : τ .
2. If � � M ⇑ N : τ then �′ � M ⇑ N : τ .

Canonicalization is sound in the sense that it produces a canonical form of the
appropriate type, and if we canonicalize a well-formed λHO term then its canonical
form is definitionally equivalent:

Theorem 4 (Soundness)

1. If � � M ↓ N : τ then � � N ↓ τ .
2. If � � M ⇑ N : τ then � � N ⇑ τ .

In either case, if in addition � � M : τ then � � M = N : τ .

Proof The first two parts are trivial by induction on derivations. For the last part,
proof is by induction on the canonicalization derivation, using inversion on the typing
derivation of M. In the case for rule (⇑fun) we need weakening and η-expansion. In
the case for rule (⇑whr) we need the weak head subject reduction theorem. ��

Fig. 9 Weak head normal
forms
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Fig. 10 Canonicalization

The following lemmas provide the needed foundation to show that canonicaliza-
tion is deterministic (Theorem 5).

Lemma 2 If � � M ↓ N : τ then neut(M). Moreover, if � � M ⇑ N : a and whnf(M)

then � � M ↓ N : a.

Proof Both parts follow by straightforward simultaneous induction. For the second
part, note that the only rule that can apply is (⇑↓). The rule (⇑fun) cannot apply
because the type is a base type a and (⇑whr) cannot apply because M is weak head
normalized. ��

Lemma 3 If � � M ⇑ N : τ and M
whr−−→ M′ then � � M′ ⇑ N : τ .

Proof By induction on the structure of derivations, using Lemma 2 and determinacy
of weak head reduction. ��

Lemma 4 If � � M ⇑ N : τ → τ ′ and x /∈ FV(�, M, N) then there exists K with N =
�x.K and �, x:τ � M x ⇑ K : τ ′.

Proof Straightforward, by inversion and standard permutative renaming reasoning.
��

Theorem 5 (Determinacy of canonicalization)

1. If � � M ↓ N : τ and � � M ↓ N′ : τ ′ then N = N′ and τ = τ ′.
2. If � � M ⇑ N : τ and � � M ⇑ N′ : τ ′ then N = N′.

Proof By induction on derivations. Most cases are straightforward using inversion
and the induction hypothesis. We need Lemma 2 in the case for (⇑↓), Lemma 4 in
the case for (⇑fun) and Lemma 3 in the case for (⇑whr). ��

Moreover, canonicalization is idempotent in that a canonical form canonicalizes
(only) to itself.

Lemma 5 (Idempotence)

1. If � � N ↓ τ then � � N ↓ N : τ .
2. If � � N ⇑ τ then � � N ⇑ N : τ .

Proof Straightforward by induction on the given derivations. ��
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The key property we need to reason about adequacy is that definitionally equiva-
lent terms have unique canonical forms. We have already established that canoni-
calization is sound with respect to definitional equivalence and canonical forms
are unique when they exist.

Theorem 6 (Completeness) If � � M = N : τ then for some K, we have � � M ⇑
K : τ and � � N ⇑ K : τ . Moreover, K is the unique canonical form def initionally
equivalent to M and N.

In an Appendix, we prove Theorem 6 by a Kripke logical relations argument
similar to that used by Crary [5] and (for LF) by Harper and Pfenning [12] to
prove the completeness of type-directed algorithms for definitional equivalence.
Both proofs have been formalized previously using Nominal Isabelle [16, 23], and
our proof follows a similar strategy, but there are some significant differences: in
particular, we prove the existence of a common canonical form for M and N directly,
rather than by extracting it from an algorithmic equivalence derivation as is done
in Harper and Pfenning [12]. However, the proof details are not needed in order to
appreciate the applications of Theorem 6 to the adequacy proof.

5 The Proof of Adequacy

Before we begin proving the remaining properties needed to show that the encoding
�−� is an interpretation, we need to introduce some additional concepts.

Although we have stated the adequacy theorem in terms of closed terms, in
general we also need to relate open terms (with, say, free variables x1, . . . , xn) to
λHO contexts (with, say, free variables x1:exp, . . . , xn:exp). To make this precise,
we introduce untyped contexts X, which are lists of distinct variables, and define
a translation on contexts as follows:

�•� = • �X, x� = �X�, x:exp

We also introduce a simple validity relation X � t, meaning that X is a list of
distinct variables that includes all of the free variables of t.

x ∈ X
X � x

X � t X � u
X � t u

X, x � t x �∈ X
X � λx.t

It is easy to show that X � t ⇐⇒ fv(t) ⊆ X, and that • � t holds if and only if t is
closed. In addition, we will need the following key property:

Lemma 6 For any X, we have X � t if and only if �X� � �t� : exp.

Proof Proof in the forward direction is by induction on the derivation of X � t. In the
reverse direction, the proof proceeds by induction on the structure of t and inversion
on the typing derivation. ��
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Note in particular that the forward direction of Lemma 6 shows that �−�
maps closed object terms to elements of �L�, as required by the definition of
interpretation.

5.1 The Encoding is a Compositional Bijection

Injectivity To prove injectivity, we introduce an inductive, relational definition of
the graph of the encoding as follows:

x ∼ x
t ∼ M u ∼ N
t u ∼ app M N

t ∼ M
λx.t ∼ lam (�x.M)

Lemma 7 For any t and M, we have �t� = M if and only if t ∼ M.

Proof The forward direction is by induction on t. The second part is by induction on
the derivation of t ∼ M. ��

Lemma 8 (Injectivity on graph) If t ∼ M and u ∼ M then t = u.

Proof By induction on the derivation of t ∼ M, and inversion on the derivation of
u ∼ M. ��

Corollary 1 (Injectivity) The function �−� is injective.

Now, we can prove that the encoding satisfies part 4(a) of the definition of
interpretation:

Theorem 7 (Injectivity on definitional equivalence classes) If �X� � �t� = �u� :
exp then t = u. In particular, if t, u are closed and • � �t� = �u� : exp then t = u.

Proof By completeness, we know both �t� and �u� have a common canonical form
K. Moreover since �t� and �u� are both themselves canonical, by determinacy
(Theorem 5) and idempotence (Lemma 5) we have �t� = K = �u�. By injectivity
of �−�, we conclude t = u. ��

Surjectivity We break the proof of surjectivity down into several stages. We define
a predicate range as follows:

range(x)

range(M) range(N)

range(app M N)

range(M)

range(lam (�x.M))

We first prove range(−) characterizes the range of �−�. We will then show that
the range predicate also defines the set of canonical forms. Finally, we combine
this with the canonical forms theorem to show that every well-formed expression
of appropriate type is definitionally equivalent to the encoding of an object term.

Lemma 9 For any M, we have range(M) if and only if there exists t such that �t� = M.
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Next we need to show that the range predicate correctly identifies the canonical
forms. To do this, we need to proceed by height induction on λHO terms and apply
inversion principles to show that canonical forms must be of the same shape as the
elements of range(−).

Lemma 10 (Atomic forms have at most two arguments) For any X, M, τ , if �X� �
M ↓ τ (with respect to 	L) then τ is not of the form τ1 → (τ2 → (τ3 → τ4)).

Proof By height induction on M and inversion on derivations. In the base cases
for constants and variables, the proof is by case analysis of the possible types. The
inductive case involving application follows because in the application rule for atomic
forms, the type in the hypothesis has one more argument than in the conclusion. ��

Lemma 11 If �X� � M ⇑ exp then either:

1. M is a variable x ∈ X; or
2. There exist M1, M2 such that M = app M1 M2 and �X� � M1 ↓ exp and �X� �

M2 ↓ exp; or
3. There exist x, M′ with x /∈ X and M = lam(�x.M′) and �X, x� � M′ ↓ exp.

Proof Case analysis, using the previous lemma to cut off inversion. ��

Lemma 10 is admittedly ugly, but there is no obvious way to avoid it: for any finite
signature there will always be a finite bound on the number of arguments, but to
prove a specific case analysis lemma such as Lemma 11 we need to know a constant
upper bound to cut off the inversion.

Theorem 8 For any X, M, we have range(M) and �X� � M : exp if and only if
�X� � M ⇑ exp.

Proof The forward direction is immediate by induction on derivations of range(M).
For the reverse direction, we can use height induction on M, using the previous
lemma to split into cases. ��

Corollary 2 If �X� � M ⇑ exp then there exists t such that X � t and �t� = M.

Now we can show that the encoding satisfies the desired part 4(b) of the definition
of interpretation.

Theorem 9 (Surjectivity) If �X� � M : exp then there exists t such that X � t and
�X� � �t� = M : exp. In particular if • � M : exp then there exists a closed t with • �
�t� = M : exp.

Bijectivity and Compositionality In treatments of adequacy for LF, it is often
expected that the encoding function be a bijection mapping object terms to canonical
forms, and in addition should be “compositional”, which is generally taken to mean
that it should satisfy the equation

�t[u/x]� = �t�{�u�/x}
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The bijectivity property follows immediately from Lemma 6, injectivity and
surjectivity:

Corollary 3 For any X, the function �−� is a bijection

�−� : {t | X � t} → {M | �X� � M ⇑ exp}
between the set of object language terms (over variables X) and the set of def initional
equivalence classes of meta-language terms (represented by canonical forms) of type
exp (over context �X�).

In our formalization, the compositionality or substitution-preservation property is
also straightforward by induction on the structure of terms. This is straightforward
because variables in expressions in the range of the bijection are always of type exp,
hence these substitutions never introduce any β-reductions.

Theorem 10 (Compositionality) Let t, u be object terms and x be a variable. Then

�t[u/x]� = �t�{�u�/x}

Proof Induction on t, avoiding variable capture in x and u. ��

Compositionality does not correspond to any one part of the definition of inter-
pretation that we are using, since we are only proving that relations on closed object
terms are interpreted as other relations on closed λHO terms. However, we still
need to establish compositionality in order to prove that the encoding preserves and
reflects β-reduction.

5.2 The Encoding Preserves and Reflects Reduction

Ultimately, we want to show that for closed terms t, u, we have t −→β u if and only if
•;L =⇒ �t� ���β �u� is derivable. To show this we will need to prove more general
versions of these statements involving open terms. We refer to the forward, easier
direction as preservation, and the reverse direction as ref lection.

Preservation We first establish that the rules of object language β-equivalence are
correctly simulated by derivability in L:

Lemma 12 (Rule preservation)

1. If �; L =⇒ M ���β P and � � M, N, P : exp then �;L =⇒ app M N ���β

app P N.
2. If �; L =⇒ N ���β P and � � M, N, P : exp then �;L =⇒ app M N ���β

app M P.
3. If �, x:exp; L =⇒ M ���β M′ and �, x:exp � M, M′ : exp and x /∈ FV(�) then

�; L =⇒ lam (�x.M) ���β lam (�x.M′).
4. If �, x:exp � M : exp and � � N : exp and x /∈ FV(�, N) then �;L =⇒

app (lam (�x.M)) N ���β M{N/x}.
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Proof In each case, we proceed by looking up the appropriate rule in L, renaming
the quantified variables to fresh names, and instantiating.

– The cases for application-congruences are straightforward (albeit tedious). One
case is shown in Fig. 11a; the other is symmetric.

– In the rule for λ-congruence we need to show that the meta-logic’s use of the �-
quantifier is correct. This requires β-conversion and so is more involved. First,
let x′ be a fresh variable name. By substitution we can derive �, x′:exp; L =⇒
M{x′/x} ���β M′{x′/x}. Thus, by β-converting both sides, using Proposition 3,
we have �, x′:exp;L =⇒ (�x.M) x′ ���β (�x.M′) x′. We can then reason as
shown in Fig. 11b.

– In the case for β-reduction we need to verify that the substitution in the β-
reduction step is simulated by β-reduction in the meta-language. The derivation
is shown in Fig. 11c. Deriving � � app (lam (�x.M)) N ���β (�x.M) N =
app (lam (�x.M)) N ���β M{N/x} : o requires a number of further inference
steps. ��

Theorem 11 (Encoding preserves reduction) Assume X � t, u. Then if t −→β u then
�X�; L =⇒ �t� ���β �u�.

Proof By induction on the derivation of t −→β u. In each case we employ the
corresponding derivable rule from the previous lemma. In the case for β-reduction
steps we need Theorem 10. ��

So in particular we have established the preservation direction of part 4(c) of the
definition of interpretation:

Corollary 4 If t, u are closed terms and t −→β u then •; L =⇒ �t� ���β �u�.

Ref lection As might be expected, the reflection direction is harder, and its for-
malization involves some subtle choices concerning how to formulate inversion
principles and when to appeal to canonical-forms principles.

Informally, the proof idea is to proceed by inspecting the possible derivations
of •; L =⇒ �t� ���β �u� to establish that t −→β u. Given such a derivation, we
wish to proceed by applying inversion rules, examining all cases to see that any
derivation in λHO⇒ must end with a pattern of reasoning similar to those exhibited
in the proof of Lemma 12, then appealing to the induction hypothesis. However,
while this informal strategy appears straightforward or even trivial, mechanically
formalizing it is a significant engineering challenge. There are several reasons for
this.

First, we cannot proceed directly by induction on the structure of derivations of
•;L =⇒ �t� ���β �u�, because each single rule in the object language corresponds
to many rule applications in the meta-logic. Instead, we need to reason by height-
induction on the λHO⇒ derivations.

Second, it is also challenging, purely as a practical matter, to prove inversion prin-
ciples for each formula in L. The proofs of these inversion principles involve rea-
soning about relatively large terms, compared with the rest of the development. For
example, the abstract syntax tree for the smallest rule (red_beta) contains 19 nodes.
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Fig. 11 Derivations for Lemma 12
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Nominal Isabelle’s ability to deal with substitution as a total function is crucial for
these proofs. If we were dealing with substitution relationally or as a partial function,
we might need to reason explicitly about how to push the substitution through each
of the 19 nodes. A related issue is that the rules in L are defined by fixing specific
name values for the bound variables. We have informally glossed over the choice of
these names in this article, but in a formalization, to invert the uses of these rules we
need to generate fresh variables and rename the formulas. This again forced us to
rely heavily on Nominal Isabelle’s support for swapping and Isabelle’s simplifier.

Finally, although we eventually want to prove that •;L =⇒ �t� ���β �u� implies
t −→β u, this is too strong to use as our induction hypothesis. Of course, we need to
generalize from the empty context to a context �X�. We also need to generalize
the conclusion �t� ���β �u� to M ���β N where M, N are λHO terms that are
definitionally equivalent to �t� and �u� respectively. This is in principle no problem,
but in practice can lead to extremely large and unwieldy induction hypotheses if we
are not careful.

To summarize, we follow this strategy to prove reflection:

1. Introduce an equivalent variant of λHO⇒ instrumented with height annotations.
2. Prove inversion principles for focused derivations involving each rule of L.
3. Introduce a convenient definition X � t � M with useful properties, particularly

that �X�; L =⇒ M ���β N implies that for some t, u we have X � t � M and
X � u � N where t −→β u.

4. Conclude that for closed t, u, if •;L =⇒ �t� ���β �u� then t −→β u.

Height-bounded rules for λHO⇒ To formalize the informal proof idea sketched above,
we introduce an instrumented version of the λHO⇒ proof rules. We define the two
instrumented judgments �;  =⇒n φ and �;  | φ −→n A in Fig. 12. Note that n is
only incremented in the rule (sel)n, so n essentially tracks the number of uses of
that rule.

We will need the following basic properties:

Proposition 5 (Properties of height-bounded derivations)

1. If n ≤ m then �;  =⇒n φ implies �;  =⇒m φ.
2. If n ≤ m then �;  | φ −→n A implies �; | φ −→m A.
3. �;  =⇒n φ holds for some n if f �; =⇒ φ.
4. �;  | φ −→n A holds for some n if f �;  | φ −→ A.

Fig. 12 Height-bounded λHO⇒ derivations
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Proof The first two parts are by an easy simultaneous structural induction on
derivations. Parts (3) and (4) are easy in the forward direction; in the reverse direc-
tion we need the monotonicity properties (parts (1,2)) for the case (⊃L). ��

Inversion principles for the reduction rules We will now show that for each of
the formulas φ ∈ {(red_app1), (red_app2), (red_lam), (red_beta)} = L, if we know
�;L | φ −→n M ���β N, then the derivation can be inverted in an appropriate
way. To show this, we will frequently need to use the fact that the ���β relation
symbol is injective with respect to definitional equivalence. This follows easily from
properties already established, but it is needed frequently so we state it as a separate
lemma:

Lemma 13 (Injectivity of reduction) If � � (M ���β N) = (M′ ���β N′) : o then � �
M = M′ : exp and � � N = N′ : exp.

Proof We know that both � � M ���β N : o and � � M′ ���β N′ : o must hold. By
the canonical-forms theorem, we know both terms canonicalize to a common canon-
ical form. By inversion and inspection of the derivations leading to the canonical
forms, we can see that the canonical form must be of the form K ���β K′, and
moreover we must have subderivations of � � M ⇑ K : exp and � � M′ ⇑ K : exp.
So by soundness of canonicalization (Theorem 4) and transitivity and symmetry of
definitional equivalence we can conclude � � M = M′ : exp. A similar argument
shows � � N = N′ : exp, as desired. ��

Lemma 14 (Rule reflection)

1. If �; L | (red_app1) −→n M ���β N then there exist M′, N′, P such that

(a) � � M = app M′ N′ : exp and � � N = app P N′ : exp;
(b) � � M′ : exp and � � N′ : exp and � � P : exp; and
(c) �;L =⇒n M′ ���β P.

2. If �; L | (red_app2) −→n M ���β N then there exist M′, N′, P such that

(a) � � M = app M′ N′ : exp and � � N = app M′ P : exp;
(b) � � M′ : exp and � � N′ : exp and � � P : exp; and
(c) �;L =⇒n N′ ���β P.

3. If �; L | (red_lam) −→n M ���β N then there exist M′, N′, x such that:

(a) x �∈ FV(�, M′, N′);
(b) � � M = lam M′ : exp and � � N = lam N′ : exp;
(c) � � M′ : exp → exp and � � N′ : exp → exp ; and
(d) �, x:exp; L =⇒n M′ x ���β N′ x.

4. If �; L | (red_beta) −→n M ���β N then there exist M′, N′, x such that:

(a) x �∈ FV(�, N′);
(b) � � M = app (lam (�x.M′)) N′ : exp and � � N = (�x.M′) N′ : exp; and
(c) �, x:exp � M′ : exp and � � N′ : exp.
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Proof The proofs of these inversion principles require choosing fresh names for the
bound variables in the rules and applying case-analysis and inversion rules following
the syntax of the rules, using Lemma 13 as needed. Essentially, we show that the
derivations can only have the forms exhibited in the proof of Lemma 12. ��

To prove the main reflection result, we will prove the more general induction
hypothesis:

�X�; L =⇒n M ���β N implies ∃t, u. X � t � M ∧ X � u � N ∧ t −→β u

where X � t � M abbreviates the property that M is definitionally equivalent to the
encoding of t with respect to variables in X:

X � t � M � �X� � �t� = M : exp

It is straightforward to show from prior developments that this relation satisfies the
following properties, which are needed in the proof of reflection:

Proposition 6 (Properties of encoding)

1. (Variable) If x ∈ X then X � x � x.
2. (Application) If X � t � M and X � u � N then X � t u � app M N.
3. (Lambda) If X, x � t � M and x /∈ FV(X) then X � λx.t � lam (�x.M).
4. (Closure under def initional equivalence) If �X� � M = N : exp then X � t � M

holds if and only if X � t � N holds.
5. (Injectivity) If X � t � M and X � u � M then t = u.
6. (Surjectivity) If �X� � M : exp then there exists t with X � t � M.
7. (Substitution) If X, x � t � M and X � u � N where x /∈ FV(X) then X �

t[u/x] � M{N/x}.

Proof Parts 1–3 are immediate by unwinding definitions. Injectivity and surjectivity
follow by Theorems 7 and 9. Most other parts follow by combining previously
established properties for the individual judgments. For part 5 we need Theorem 7.
For part 6 we need Lemma 6 and Theorem 9. Part 7 requires Lemma 6 and
Theorem 10. ��

We can now establish the main result using the height-instrumented derivations,
as follows:

Theorem 12 If �X�; L =⇒n M ���β N then there exist t, u with X � t � M and
X � u � N and t −→β u.

Proof We proceed by induction on n. If n = 0, the conclusion holds vacuously by
case analysis since �X�; L =⇒0 M ���β N can never be derived. If n = n0 + 1
where the induction hypothesis holds for n0, then we distinguish cases. Since the
conclusion of the rule is an atomic formula, the derivation must be of the form:

φ ∈ L �X�; L | φ −→n0 M ���β N

�X�; L =⇒n0+1 M ���β N
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There are only four choices for φ, and for each possibility there is an applicable case
of Lemma 14.

1. (red_app1): Using Lemma 14(1), we know that there must exist well-formed
M′, N′, P such that M is definitionally equivalent to app M′ N′ and N is
definitionally equivalent to app P N′ and �X�; L =⇒n0 M′ ���β P. So, by
induction, we know that there must exist t and t′ with X � t � M′ and X � t′ �
P and t −→β t′. Moreover, by Proposition 6(6), we also know that there is a u
such that X � u � N′. Hence, to conclude, using Proposition 6(2) we can derive:

X � t � M′ X � u � N′
X � t u � app M′ N′

X � t′ � P X � u � N′
X � t′ u � app P N′

t −→β t′

t u −→β t′ u

2. (red_app2): Similar to the first case, using Lemma 14(2).
3. (red_lam): Using Lemma 14(3), we know that there must exist M′ and N′ and

x with M definitionally equivalent to lam M′ and N definitionally equivalent
to lam N′ and �X�, x:exp; L =⇒n0 M′ x ���β N′ x derivable. So, by induction,
we know that there must exist t, u with X, x � t � M′ x and X, x � u � N′ x. By
transitivity and η-equivalence we know that �X� � M = lam (�x.M′ x) : exp, so
we can show that X � λx.t � M by reasoning as follows:

�X� � M = lam (�x.M′ x) : exp
X, x � t � M′ x

X � λx.t � lam (�x.M′ x)

X � λx.t � M

Similarly, since �X� � N = lam (�x.N′ x) : exp also holds by transitivity and η-
equivalence, we can show that X � λx.u � N. Finally, we can conclude that the
desired object β-reduction step can be performed:

t −→β u
λx.t −→β λx.u

4. (red_beta): Using Lemma 14(4), we know that there must exist x, M′, N′ such
that x �∈ FV(�, N′) and

(a) � � M = app (lam (�x.M′)) N′ : exp and � � N = (�x.M′) N′ : exp; and
(b) �, x:exp � M′ : exp and � � N′ : exp.

By Proposition 6(6), we know that there must exist t, u with X, x � t � M′ and
X � u � N′. First, since �X� � M = app (lam (�x.M′)) N′ : exp, we can show
that X � (λx.t) u � M, reasoning as follows:

�X� � M=app (lam (�x.M′)) N′ :exp

X, x � t � M′

X � (λx.t) � lam (�x.M′) X � u � N′

X � (λx.t) u � app (lam (�x.M′)) N′

X �(λx.t) u � M

Next, observe that �X� � N = M′{N′/x} : exp must hold by transitivity and β-
equivalence, so we can also show that X � t[u/x] � N, reasoning as follows:

�X� � N = M′{N′/x} : exp
X, x � t � M′ X � u � N′

X � t[u/x] � M′{N′/x}
X � t[u/x] � N

Author's personal copy



234 J. Cheney et al.

Finally, we can conclude that the above terms do reduce in the object-language:

(λx.t) u −→β t[u/x]
Since these were the only four possibilities, the proof is complete. ��

Corollary 5 (Encoding relation reflects reduction) If �X�; L =⇒ M ���β N then
there exist t, u with X � t � M and X � u � N and t −→β u.

Proof By the previous theorem and the equivalence between the height-
instrumented and ordinary λHO⇒ rules. ��

Theorem 13 (Encoding reflects reduction) If �X�; L =⇒ �t� ���β �u� where X �
t, u then t −→β u.

Proof As shown above, we know that there exist t′, u′ with X � t′ � �t� and X �
u′ � �u� and t′ −→β u′. Moreover, clearly X � t � �t� and X � u � �u�. Hence,
by injectivity of the encoding relation we have t = t′ −→β u′ = u. ��

In particular we have established the reflection direction of part 4(c) of the
definition of interpretation:

Corollary 6 If t, u are closed terms and •;L =⇒ �t� ���β �u� then t −→β u.

6 Conclusion

We have shown that the model-theoretic notion of interpretation provides a useful
generalization of the notion of adequacy in higher-order abstract syntax, and proved
the existence of an interpretation in detail for a standard example. We have inten-
tionally focused on a simply-typed (and simple) metalanguage and simple object
language in order to avoid an overwhelming number of details. We believe that the
resulting formalization will be useful for further studying adequacy in a number of
contexts.

An immediate next step for future work is to adapt our formalization to study
adequacy for more complex examples, such as Abel’s encoding of the λμ-calculus [1].
We are also interested in formalizing adequacy for other systems, particularly for
type theories supporting nominal abstract syntax [2, 19]. Our proof may be useful for
identifying proof patterns for automating adequacy proofs, or avenues for further
improving reasoning about names and binding in Nominal Isabelle.

Most higher-order abstract syntax techniques have the capability to use impli-
cation subgoals (viewing theories as higher-order logic programs). For example, a
typing rule for λ-abstraction is typically implemented using a rule such as:

�T1, T2:ty.�M:exp → exp. (�x:exp. of x T1 → of (M x) T2)

→ of (lam M) (arrow T1 T2)
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where ty is a new type with constructor arrow : ty → ty → ty and of : exp → ty → o.
Our proof did not exercise this capability. (Put another way, nowhere did we make
use of the (⊃R) rule.) Moreover, we have not discussed how to translate object-
language properties to metatheoretic properties in Twelf, which rely on additional
features such as worlds (sets of contexts) and subordination relations (indepen-
dence constraints among types). Formalizing adequacy for richer specifications in
languages such as LF or Canonical LF therefore remains a significant open problem.
One natural next step could be to formalize Harper and Licata’s detailed, but not
mechanically checked, development of adequacy [11] for the simply-typed lambda-
calculus in LF.

A final question is the (informal) adequacy of our encodings of the object lan-
guage, meta-language and meta-logic in Nominal Isabelle. Formally, Urban showed
that a vanilla untyped λ-calculus is isomorphic to the nominal datatype we used here;
a similar result could easily be shown for our λHO language. Beyond that, as we
argued in the introduction, it appears impossible to fully formalize adequacy; instead,
all we can formalize is the relationships between two different representations in
some third system in which we must repose trust. Our work nevertheless shows that
formalization can help increase confidence in the adequacy of representations of
languages with name-binding.

Acknowledgements We wish to thank Bob Harper and Frank Pfenning for discussions about ade-
quacy and Andrew Pitts and Christian Urban for discussions about nominal techniques and Nominal
Isabelle. Cheney is supported by a Royal Society University Research Fellowship. NICTA is funded
by the Australian Government as represented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence
program.

Appendix: Proof of Completeness of Canonicalization

The logical relation is shown in Fig. 13. As with other Kripke-style logical relations,
we index by a context � and quantify over argument terms M′, N′ over an extended
context �′ in the case for function application. Note that we build the fact that
logically related λHO terms of base type have a common canonical form into the
base case. We also extend the logical relation to handle simultaneous substitutions.

Fig. 13 Logical relation for existence of canonical forms
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Simultaneous substitutions are of the form θ = M1/x1, . . . , Mn/xn and their behavior
is defined in the standard way:

x{θ} = M (M/x ∈ θ)

y{θ} = y (no M/y ∈ θ)

(M N){θ} = M{θ} N{θ}
(λx.M){θ} = λx.(M{θ}) (x �∈ FV(θ))

where FV(θ) includes all variables mentioned in θ .
The main difference between our proof technique and the other approaches

mentioned above is that we directly establish the existence of a common canonical
form using the canonicalization judgment. In contrast, the main objective in the
earlier proofs is completeness of type-directed βη-equivalence algorithms [5, 12].
Harper and Pfenning [12] showed that canonical and atomic forms can be extracted
from their algorithmic equivalence derivations once these have been shown to exist.
For our purposes, this approach would represent extra formalization effort that is
not strictly necessary for the adequacy results we wish to establish.

Our proof is also technically slightly simpler. Compared to Crary’s proof, we use
simpler rules that perform weak head reduction one step at a time rather than multi-
step weak head normalization. Compared to Harper and Pfenning’s proof, we can
prove transitivity of the logical relation directly; in contrast, in our formalization
of Harper and Pfenning’s proof, proving transitivity of the logical relation requires
establishing that the equivalence algorithm is transitive, which in turn requires si-
multaneous induction on two derivations. Here, in contrast, transitivity of the logical
relation follows from determinacy, which we proved using structural induction.

Lemma 15 (Logical relation weakening) If � ⊆ �′ then:

1. If � � M = N ∈ �τ� then �′ � M = N ∈ �τ�.
2. If � � θ = σ ∈ ��� then �′ � θ = σ ∈ ���.

Proof Straightforward by induction on τ or � respectively, using weakening for
canonicalization in the base case. ��

Theorem 14 (Main theorem)

1. If � � M = N ∈ �τ� then there exists K such that � � M ⇑ K : τ and � � N ⇑
K : τ .

2. If � � M ↓ K : τ and � � N ↓ K : τ hold for some K then � � M = N ∈ �τ�.

Proof We prove both implications simultaneously (for arbitrary �, M, N) by induc-
tion on τ . The base cases are trivial. If τ = τ1 → τ2, where the induction hypothesis
holds for τ1 and τ2, then we proceed as follows.

1. For part (1), let �, M, N be given such that � � M = N ∈ �τ1 → τ2�. Choose
a fresh variable name x /∈ FV(�, M, N). Then �, x:τ1 is a well-formed context
extending �, and we can show easily that �, x:τ1 � x ↓ x : τ1. Hence, by induction
we know �, x:τ1 � x = x ∈ �τ1�. By definition of the logical relation, it follows
that �, x:τ1 � M x = N x ∈ �τ2�. By induction, we can choose K satisfying

Author's personal copy



Formalizing Adequacy 237

�, x:τ1 � M x ⇑ K : τ2 and �, x:τ1 � N x ⇑ K : τ2. Hence, we can conclude that
� � M ⇑ �x.K : τ1 → τ2 and � � N ⇑ �x.K : τ1 → τ2, i.e., �x.K is the common
canonical form of M and N.

2. For part (2), if τ = τ1 → τ2, let �, M, N, K be given such that � � M ↓ K : τ1 →
τ2 and � � N ↓ K : τ1 → τ2 hold. Then by definition of the logical relation, it
suffices to show that for any �′ ⊇ � and M′, N′ satisfying �′ � M′ = N′ ∈ �τ1�,
we have �′ � M M′ = N N′ ∈ �τ2�. Let �′, M′, N′ satisfying these criteria be
given. By induction, since �′ � M′ = N′ ∈ �τ1� we also know that there must exist
a K′ such that � � M′ ⇑ K′ : τ1 and � � N′ ⇑ K′ : τ1. Thus, we can derive:

� � M ↓ K : τ1 → τ2

�′ � M ↓ K : τ1 → τ2 �′ � M′ ⇑ K′ : τ1

�′ � M M′ ↓ K K′ : τ2

using weakening and the (↓app) rule. Similarly, we can derive �′ � N N′ ↓ K K′ :
τ2. By induction, we therefore can conclude that �′ � M M′ = N N′ ∈ �τ2�, and
since �′, M′, N′ were arbitrary we can conclude that � � M = N ∈ �τ1 → τ2�
also. ��

Lemma 16 (Logical relation symmetry)

1. If � � M = N ∈ �τ� then � � N = M ∈ �τ�.
2. If � � θ = σ ∈ ��� then �′ � σ = θ ∈ ���

Proof Straightforward inductions on τ or �. ��

Lemma 17 (Logical relation transitivity)

1. If � � M = N ∈ �τ� and � � N = N′ ∈ �τ� then � � M = N′ ∈ �τ�.
2. If � � θ = σ ∈ ��� and � � σ = σ ′ ∈ ��� then �′ � θ = σ ′ ∈ ���.

Proof Part (1) is by induction on τ .

– If τ = a then by assumption we have � � M ⇑ K : a and � � N ⇑ K : a and � �
N ⇑ K′ : a and � � N′ ⇑ K′ : a. By determinacy, we know that K = K′. Hence,
� � M ⇑ K : a and � � N′ ⇑ K : a, so we can conclude � � M = N′ ∈ �a�.

– If τ = τ1 → τ2 where the induction hypothesis holds for τ1 and τ2 then by assump-
tion we have � � M = N ∈ �τ1 → τ2� and � � N = N′ ∈ �τ1 → τ2�. To prove
� � M = N′ ∈ �τ1 → τ2�, let �′ ⊇ �, M1, N1 be given with �′ � M1 = N1 ∈ �τ1�.
By symmetry, we know �′ � N1 = M1 ∈ �τ1� so by induction we know �′ � M1 =
M1 ∈ �τ1�. Hence, by assumption we know that �′ � M M1 = N M1 ∈ �τ2� and
�′ � M M1 = N′ N1 ∈ �τ2�, so by induction we can conclude that � � M = N′ ∈
�τ1 → τ2�.

For part (2), we proceed by straightforward induction on �. ��

Lemma 18 (Closure under weak head expansion)

1. If M
whr−−→ M′ and � � M′ = N ∈ �τ� then � � M = N ∈ �τ�

2. If N
whr−−→ N′ and � � M = N′ ∈ �τ� then � � M = N ∈ �τ�
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Proof By (straightforward) induction on τ , using (⇑whr) in the base case. ��

Theorem 15 (Well-formed terms are logically related) If � � M : τ then for any
�, θ, σ , if � � θ = σ ∈ ��� then � � M{θ} = M{σ } ∈ �τ�.

Proof By induction on the well-formedness derivation. For variables and applica-
tions the reasoning is straightforward. For constants, we appeal to Theorem 14. For
�-abstractions, suppose we have

�, x:τ1 � M : τ2

� � �x.M : τ1 → τ2

and assume that for some �, θ , σ we have � � θ = σ ∈ ���. We wish to show
� � M{θ} = M{σ } ∈ �τ1 → τ2�, so let �′ ⊇ �, M′, N′ be given with �′ � M′ = N′ ∈
�τ1�. Then using weakening and the definition of the logical relation for substitu-
tions we have �′ � θ, M′/x = σ, N′/x ∈ ��, x:τ�. It follows by induction that �′ �
M{θ, M′/x} = M{σ, N′/x} ∈ �τ2�. By closure under weak head expansion and prop-
erties of simultaneous substitutions, we have �′ � (�x.M{θ}) M′ = (�x.M{σ }) N′ ∈
�τ2�. Since �′, M′, N′ were arbitrary, we can conclude that � � (�x.M{θ}) =
(�x.M{σ }) ∈ �τ1 → τ2�, as desired. ��

Lemma 19 (Closure under βη-conversion)

1. If � � (�x.M) N : τ and �′ � θ = σ ∈ ��� and x �∈ FV(�, �′, θ, σ, N) then �′ �
(�x.M{θ}) N{θ} = M{N/x}{σ } ∈ �τ�.

2. If � � M : τ → τ ′ and �′ � θ = σ ∈ ��� and x �∈ FV(�, �′, θ, σ, M) then �′ �
M{θ} = �x.M{σ } x ∈ �τ → τ ′�.

Proof Both parts are straightforward, using subject reduction, the previous theorem,
and closure under weak head expansion. ��

Theorem 16 (Definitionally equivalent terms are logically related) If � � M = N : τ

and �′ � θ = σ ∈ ��� then �′ � M{θ} = N{σ } ∈ �τ�.

Proof The proof for the cases of congruence rules are similar to those for The-
orem 15. The new cases involve β- or η-equivalence, symmetry and transitivity.
The cases for β- and η-equivalence follow from the previous lemma, and the cases
for symmetry and transitivity follow using symmetry and transitivity of the logical
relation. ��

Lemma 20 (Identity substitution is logically related to itself) For any � we have
� � id� = id� ∈ ���.

Lemma 21 (Definitionally equivalent implies logically related) If � � M = N : τ

then � � M = N ∈ �τ�.

Proof Immediate, chaining Lemma 20 and Theorem 16. ��
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We can now complete the proof of Theorem 6 as follows:

Proof (of Theorem 6) By the previous lemma we have � � M = N ∈ �τ�, and by the
main theorem (Theorem 14) we have � � M ⇑ K : τ and � � N ⇑ K : τ for some K.
Clearly, by soundness (Theorem 4) K is a canonical form definitionally equivalent to
both M and N and by determinacy (Theorem 5) it is unique. ��
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