
SAT-based Strategy Extraction in Reachability Games∗

Niklas Een
UC Berkeley

Alexander Legg
NICTA† and UNSW Australia

Nina Narodytska
University of Toronto and NICTA

Leonid Ryzhyk
Carnegie Mellon University

Abstract

Reachability games are a useful formalism for the synthesis
of reactive systems. Solving a reachability game involves (1)
determining the winning player and (2) computing a winning
strategy that determines the winning player’s action in each
state of the game. Recently, a new family of game solvers has
been proposed, which rely on counterexample-guided search
to compute winning sequences of actions represented as an
abstract game tree. While these solvers have demonstrated
promising performance in solving the winning determination
problem, they currently do not support strategy extraction.
We present the first strategy extraction algorithm for abstract
game tree-based game solvers. Our algorithm performs SAT
encoding of the game abstraction produced by the winner de-
termination algorithm and uses interpolation to compute the
strategy. Our experimental results show that our approach
performs well on a number of software synthesis benchmarks.

1 Introduction
Two-player games are a useful formalism for synthesis and
analysis of reactive systems (Bloem et al. 2007; Cassez et al.
2009; Ryzhyk et al. 2014). A two-player game involves two
parties, referred to as the controller and the environment,
which perform actions over a finite state space of the game.
The controller aims to satisfy a predefined game objective,
while the environment tries to prevent it from doing so.

We consider games with reachability objectives, where
the controller must force the system into a given goal re-
gion. Consider, for example, the problem of synthesising
the packet transmission function of a network controller
device driver. The problem can be formulated as a game
played over the state space of the device automaton, where
controller actions model software commands to the device
and environment actions model non-deterministic hardware
events, such as error conditions. The game objective is to
force the device into a state where it successfully completes
packet transfer (Ryzhyk et al. 2014).

∗This research is supported by a grant from Intel Corporation.
†NICTA is funded by the Australian Government through

the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Game-based synthesis involves solving two related prob-
lems: (1) determining the winner and (2) generating a win-
ning strategy. The former identifies the player who can al-
ways win the game by choosing correct actions in every state
(any reachability game has a unique winner); the latter com-
putes a strategy function which maps states of the game into
winning actions. The strategy can then be converted into a
hardware circuit or a software program.

The traditional approach to game solving iteratively con-
structs a sequence of state sets from which the controller
can win the game in 1, 2, . . . rounds, until a fixed point is
reached. Given this sequence, the strategy can be extracted
using one of several existing techniques (Lonsing and Biere
2010; Jiang, Lin, and Hung 2009; Ehlers, Könighofer, and
Hofferek 2012). Both parts of this two-step process are car-
ried out symbolically using BDD, SAT or QBF-based meth-
ods. All three approaches suffer from similar performance
problems. In particular, the winner determination step be-
comes inefficient if there does not exist a compact BDD or
CNF representation of the winning sets or if such a represen-
tation is hard to compute. Furthermore, the strategy extrac-
tion step starts with an intermediate strategy representation
that defines a potentially very large number of winning tran-
sitions in every state. Determinising such a strategy proved
costly (Bloem et al. 2014a).

To address these limitations, a new type of SAT and
QBF-based game solvers was proposed recently (Janota et
al. 2012; Narodytska et al. 2014). Instead of computing
winning regions, they use counterexample-guided search to
compute winning sequences of actions represented as a com-
pact abstract game tree. These solvers proved to be efficient
at solving the winner determination problem on several fam-
ilies of benchmarks where the traditional approach does not
scale (Narodytska et al. 2014).

In this work, we focus on the strategy generation problem,
which is crucial for practical application of game solvers.
Our contribution is two-fold:

1. We propose the first strategy generation method for game
solvers based on abstract game trees, thus enabling the use
of such solvers as part of a complete synthesis methodol-
ogy.

2. We demonstrate that abstract game trees enable low-
overhead strategy generation, thus providing additional

compelling motivation for further research on this new
class of solvers. Our method reuses game abstractions
computed by the winner determination algorithm and, as
a result, introduces low computational overhead on top of
the winner determination step.

2 Background
SAT and QBF A satisfiability problem φ consists of
a set of Boolean variables X and a set of clauses C =
{C1, . . . , Cm}. A clause is a disjunction of literals, where
a literal is either a variable xi ∈ X or its negation xi. We
denote the set of variables in the formula φ by vars(φ).

A Quantified Boolean Formula (QBF) is an extension of
a satisfiability problem with quantifiers with the standard se-
mantics. A formula ∀x.φ is satisfied iff φ |x=0 ∧φ |x=1 is
satisfied. Similarly, a ∃x.φ is satisfied iff φ |x=0 ∨φ |x=1 is
satisfied. We assume that QBFs are in closed prenex form:
Q1X1 . . . QnXnφ, where Qi ∈ ∀,∃ and Qi 6= Qi+1 and
Xi ∩Xj = ∅, i 6= j. The propositional part φ of a QBF is
called the matrix and the rest—the prefix.
Interpolants Let A and B be propositional formulas such
thatA∧B = ⊥. Then there exists a propositional formula I,
called an interpolant ofA andB such thatA =⇒ I and I∧
B = ⊥ and vars(I) = vars(A)∩vars(B). An interpolant
can be efficiently obtained from a proof of unsatisfiability of
A ∧B produced by a SAT solver (Pudlak 1997).
Games and Strategies A reachability game G =
〈S,Lc, Lu, O, δ〉 consists of a set of states S, controllable
actions Lc, uncontrollable actions Lu, a set O ∈ 2S of goal
states, and a transition function δ : (S,Lc, Lu) → S. The
game proceeds in a sequence of rounds, starting from the
initial state. In each round, the controller picks an action
c ∈ Lc. The environment responds by picking an action
u ∈ Lu, and the game transitions to a new state δ(s, c,u).

Example 1 Consider a game whose transition function δ is
defined by the DFA in Figure 1(a). In the first round the
controller stays idle (i.e., executes a special idle action i)
and the environment chooses a number 1 or 2. The con-
troller must match 1 by playing a in the second round and 2
by playing b and c in the second and third rounds. The goal
consists of a single state s4. Hence, S = {s0, . . . , s4}, Lc =
{i, a, b, c}, Lu = {0, 1, 2}, O = {s4}. We make a simplify-
ing assumption here that each player chooses one of the ac-
tions available in the current state of the game automaton,
e.g., the controller must play i in the first round even though
the set of all possible actions is {i, a, b, c}. �

For a set I ⊆ S and an action a ∈ Lc, we define the
a-successor of I:

succ(I, a) = {s′ | ∃s ∈ I,u ∈ Lu.s
′ = δ(s, a,u)} (1)

One way to solve a reachability game is to reduce it to
a sequence of bounded reachability games, that impose a
bound on the number of rounds in which the controller must
force the game into the goal. By increasing the bound we
are guarantied to either find a strategy or prove that it does
not exist. In this work we focus on solving bounded games.

(a) (b)

a b

c

i

i

Round 1

Round 2

Round 3

(i,1)

(i,2)

(a,0)

(b,0)

(c,0)I = s0

s1

s2 s3

O = s4

(i,0)

Figure 1: (a) Transition relation δ in Example 1; (b) Exam-
ple abstract game trees.

Given a reachability game G, function π : S → Lc is
a winning strategy of length n on behalf of the controller
from initial set I ⊆ S if any sequence (s0, c0, s1, c1, ..., sn),
such that s0 ∈ I and, ck = π(sk), sk+1 ∈ succ({sk}, ck),
visits the goal set: ∃j ∈ [0, n].sj ∈ O. Dually, ρ :
S × Lc → Lu is a spoiling environment strategy of length
n from I if there exists state s0 ∈ I such that any sequence
(s0, c0,u0, s1, c1,u1, ..., sn) such that uk = ρ(sk, ck), and
sk+1 = δ(sk, ck,uk), stays outside of the goal set: ∀j ∈
[0, n].sj 6∈ O. We say that the game is winning from I in
n rounds if there exists a winning controller strategy for it.
Otherwise, the game is losing and there exists a spoiling en-
vironment strategy.

Example 2 Suppose that the bound n is 3, thus the con-
troller must reach state s4 in three rounds. The following
strategy is winning for the controller from the initial set
I = {s0} in 3 rounds: π(s0) = π(s4) = i, π(s1) = a,
π(s2) = b and π(s3) = c. �

In this paper we deal with symbolic games defined over
three sets of Boolean variables s, c, and u. Each state in
s ∈ S represents a valuation of variables s, each action
in c ∈ Lc (u ∈ Lu) represents a valuation of variables c
(u). Sets relations of a symbolic game are represented by
their characteristic formulas, e.g., the objective O is given
as a Boolean formula O(s) over variables s. The transi-
tion relation δ of the game is given as a Boolean formula
∆(s, c, u, s′) over state, action, and next-state variables.
Games as QBF A bounded reachability game can be en-
coded as a QBF, where existentially and universally quanti-
fied variables model opponent moves. To this end, we intro-
duce n+ 1 copies of state variables s (where n is the bound
on the length of the winning strategy): s0, . . . , sn, where
si encode the state of the game after i rounds. We also in-
troduce n copies of controllable and uncontrollable action
variables, ci and ui, i = 0, . . . , n− 1.

The following formula is true iff there exists a spoiling
environment strategy for G of length n from I (equivalently,
the formula is false iff the game is winning in n rounds):

E(I) = ∃s0∀c0∃u0...∀cn−1∃un−1∃s1..sn.I(s0) ∧ ψ0 (2)
ψi = ¬O(si) ∧∆(si, ci, ui, si+1) ∧ ψi+1, i ∈ [0, n− 1]

ψn = ¬O(sn)

Intuitively, ψi encodes a play starting at round i. It is true
iff this play is losing for the controller, i.e., it always stays
outside of the goal region. Formula E(I) holds if for some

initial state s0 ∈ I , there exists an environment response ui
to any controller action ci at every round of the game, such
that the resulting run of the game is losing for the controller.

3 Solving games using ∀-expansion
One way to solve a QBF formula is to first convert it
to CNF via ∀-quantifier expansion. Consider the formula
∃x∀y∃zφ(x, y, z). Expanding the ∀-quantifier while keep-
ing the formula in the prenex form generates the following
formula: ∃x∃z1z2[φ(x, z1)|y=0 ∧ φ(x, z2)|y=1], where z1

and z2 are fresh copies of variables z.
Straightforward application of quantifier expansion intro-

duces a large number of variables and is practically infeasi-
ble. A more pragmatic approach is to perform partial expan-
sion, i.e., to consider only a subset of possible assignments
to each universally quantified variable block. If the resulting
CNF is unsatisfiable, then so is the original QBF.

From the game solving perspective, partial expansion of
formula (2) corresponds to constructing an abstraction of the
game that restricts moves available to the controller. If the
controller wins the restricted game (i.e, the resulting CNF is
unsatisfiable), then it also wins the original game. Specif-
ically, we restrict the controller to choosing actions from a
tree, called abstract game tree, which is a special case of
∀-expansion trees (Janota and Marques-Silva 2013).

Definition 1 (Abstract game tree) An abstract game tree
for a reachability game G and bound n is a rooted tree with
uniform depth n where every edge is labelled with a total
assignment to controllable action variables and where all
outgoing edges of a node have distinct labels.

Example 3 Figure 1(b) shows an abstract game tree for the
running example. The tree restricts the controller to playing
two possible sequences of actions: (i, b, c) and (i, a, i). �

Given an abstract game tree T , a node v of the tree, and
a successor edge e of v, we denote height(T) the distance
from the root to a leaf of T , root(T) the root node, edges(v)
the list of tuples (e, a, v′) that represent outgoing edges of v,
along with their associated actions and child nodes (v′).

We define expansion ET of the game formula (2) induced
by T . To this end, we introduce a copy of state variables sv
for every node v and a copy of action variables ue and ce for
every edge e of T .

ET (I) = I(sroot(T)) ∧ ψroot(T) (3)

ψv = ¬O(sv) ∧
∧

(e,a,v′)∈edges(v)

[∆(sv, ce, ue, sv′) ∧ ce = a ∧ ψv′]

It is easy to see that ET is a partial expansion of E, with
existential quantifiers removed; hence ifE is true, then there
exists a satisfying assignment to ET . It follows that if we
can find T such that ET is unsatisfiable, then E is false and
hence the game is winning. Such T serves as a certificate of
existence of a winning strategy.

Definition 2 (Certificate tree) Given a set of states I and
an abstract game tree T , such that ET (I) is unsatisfiable,
we say that T is a certificate tree for the set I .

Proposition 1 The following statements are equivalent:

• G is winning from I in n rounds.
• There exists a certificate tree T for I of height n.

In this paper we deal with game solvers that produce such
certificate trees. In theory, any generic QBF solver that pro-
duces ∀Exp + Res refutations or refutations that can be p-
simulated by ∀Exp+Res (Janota and Marques-Silva 2013;
Beyersdorff, Chew, and Janota 2014) falls into this cate-
gory. One example is the RAREQS QBF solver (Janota et al.
2012). In practice, generic QBF solvers do not scale well in
solving real-world games (Ansótegui, Gomes, and Selman
2005; Sabharwal et al. 2006; Narodytska et al. 2014). This
motivated the development of specialised game solvers that
exploit domain-specific properties of reactive games, such
as EVASOLVER (Narodytska et al. 2014).

In the rest of the paper we assume that the game is win-
ning and the solver returns a certificate tree for it. All tech-
niques presented here can be easily adapted to compute a
spoiling strategy in case the game is losing.

4 Strategy generation
We use the certificate tree computed by the game solver as
a starting point for strategy generation. We know that the
controller can win the game in n rounds by picking actions
from the tree; however we do not yet know exactly which
actions should be picked in every state.

The strategy generation algorithm takes an initial set I
and its certificate tree T , computed by the game solver, and
generates a winning controller strategy from I . To this end,
it first partitions I into subsets Ii, one for each outgoing
branch of T (Figure 3), such that the controller can win from
Ii by picking action ai along the ith branch of the tree. This
partitioning defines the local winning strategy in the root
node of T . Next, for each partition Ii, the algorithm com-
putes the set of ai-successor states of Ii, obtaining the set
I ′i of states winning in the child subtree T ′i of Ti (Figure 3).
The algorithm is then invoked recursively for each subtree
T ′i .

Example 4 Figure 2 illustrates operation of the algorithm
on the winning abstract game tree returned by the game
solver for our running example (Figure 1(b)). The algorithm
starts at the root of the tree and the initial set I = {s0}. The
game tree only defines one winning action is the root node,
hence this action is winning is all states of I and no parti-
tioning is required. We compute the successor set reachable
by playing action i in I: I ′ = succ(I, i) = {s1, s2} (see the
game automaton in Figure 1(a)).

Next, we descent down the i branch of the tree and con-
sider subtree T ′ and its initial set I ′ (Figure 2(b)). We par-
tition I ′ into subsets I ′1 = {s1} and I ′2 = {s2} that are
winning for the left and right subtrees of T ′ respectively,
i.e., the controller must play action a in state s1 and b in s2.
Consider the resulting subtrees T ′1 and T ′2 with initial sets
I ′1 and I ′2 (Figure 2(c)). We have I ′′1 = succ(I ′1, a) = {s4},
I ′′2 = succ(I ′2, b) = {s3}. Finally, we obtain two subtrees
T ′′1 and T ′′2 with initial sets I ′′1 and I ′′2 (Figure 2(d)). Both
subtrees have one branch; hence corresponding actions i
and c are winning in I ′′1 and I ′′2 respectively.

(c)

a b

ci

(a)

a b

c

i

i

(b)

a b

ci

(d)

(T,I = {s0})

(T’,I’ = {s1,s2}) (T’,I’ = {s1,s2})

(T’1,I’1 = {s1}) (T’2,I’2 = {s2})

ci

(T’’1,I’’1 = {s4}) (T’’2,I’’2 = {s3})

Figure 2: Operation of the strategy extraction algorithm on
the running example.

(T,I)

a1 aj...

(T1,I1)

a1

(T1,I1)` `

(Tj,Ij)

aj

(Tj,Ij)` `

...
Partition

...

N
ext

Figure 3: The PARTITION function.

Putting together fragments of the winning strategy com-
puted above, we obtain the following strategy for this ex-
ample: π(s0) = i, π(s1) = a, π(s2) = b, π(s3) = c,
π(s4) = i.

The above algorithm involves two potentially costly op-
erations: winning set partitioning and successor set compu-
tation. If implemented naı̈vely, these operations can lead to
unacceptable performance. The key insight behind our solu-
tion is that both operations can be efficiently approximated
from the proof of unsatisfiability of the formulaET (I), with
the help of interpolation, as described below. The resulting
approximations are sound, i.e., preserve the correctness of
the resulting strategy.

Algorithm 1 shows the pseudocode of the strategy gener-
ation algorithm. The algorithm proceeds in two phases: the
first phase (GENLOCALSTRATS) computes local strategies
in nodes of T ; the second phase (COMPILESTRAT) compiles
all local strategies into a winning strategy function.

The GENLOCALSTRATS function recursively traverses
the certificate tree T , starting from the root, computing local
strategies in each node. The main operation of the algo-
rithm, called PARTITION, splits (T, I) into j pairs (Ti, Ii),
as shown in Figure 3. Each tree Ti is a copy of a single
branch of T . The partitioning is constructed in such a way
that the action ai that labels the root edge of Ti is a winning
controller action in Ii.

Next we consider each pair (Ti, Ii) (lines 10-14). We de-
scend down the tree and compute the controller strategy in
the child subtree T ′i of Ti (right-hand side of Figure 3). To do

Algorithm 1 Computing a winning strategy

1: function GENSTRATEGY(T , I)
2: Strat← GENLOCALSTRATS(T, I)
3: return COMPILESTRAT(Strat)
4: end function

5: function GENLOCALSTRATS(T , I)
6: v ← root(T)
7: [(e1, a1, v1), . . . , (ej , aj , vj)]← edges(v)
8: [(T1, I1), . . . , (Tj , Ij)]← PARTITION(T, I ∧ ¬O)
9: Strat← {(Ii, ai, height(T)) | i ∈ [1, j]}

10: for i = 1 to j do
11: (T ′i , I

′
i)← NEXT(Ti, Ii)

12: Strati ← GENLOCALSTRATS(T ′i , I
′
i)

13: Strat← Strat ∪ Strati
14: end for
15: return Strat
16: end function

Algorithm 2 Partitioning winning states

1: function PARTITION(T , I)
2: v ← root(T)

3: Î ← I , T̂ ← T
4: for i = 1 to j do
5: (Ti, T̃)← split(T̂)

6: A← ET̃ (Î)
7: B ← ETi(>)
8: I(sv)← Interpolant(A,B)

9: Ii ← I(s) ∧ Î
10: Î ← Î ∧ ¬I(s), T̂ ← T̃
11: end for
12: return [(T1, I1), . . . , (Tj , Ij)]
13: end function

so, we first compute the set of ai-successors of Ii: More pre-
cisely, we compute an overapproximation I ′i ⊇ succ(Ii, ai),
such that T ′i is a certificate tree for I ′i . Such an overapproxi-
mation is returned by the NEXT function in line 11. We can
now recursively invoke the strategy generation function to
compute a winning strategy for the pair (T ′i , I

′
i) (line 12).

The algorithm returns the set of tuples (W,a, k). Each
tuple represents a fragment of the strategy in some tree node,
where W is the winning set in this node, a is the controller
action to play in this set, and k is the distance from the node
to the bottom of the tree (i.e., distance to the goal).

PARTITION
The PARTITION function (Algorithm 2) computes a local
strategy in the root of an abstract game tree. It takes a pair
(T, I), such that T is a certificate tree for set I and partitions
I into subsets Ii such that the controller can win by choosing
action ai in Ii.

At every iteration, the algorithm splits the tree into the
leftmost branch Ti and the remaining tree (Figure 4). It then
computes the set Ii where the controller wins by following
the branch Ti and removes Ii from the initial set I . At the

(T,I)

ai aj

(Ti,Ii)

ai+1
...

^ ^

(T,I \ Ii)
~

...

^

Figure 4: Splitting of T in the PARTITION function.

next iteration it considers the leftover tree T̃i and the shrunk
initial set Î .

The algorithm maintains the invariant that T̂ is a certifi-
cate tree for Î and hence ET̂ (Î) is unsatisfiable. We decom-
pose this formula into two conjuncts ET̂ (Î) = A ∧ B such
that A and B only share state variables sv in the root node v
of T and that the interpolant I of A and B consists of states
where the controller can win by following the Ti subtree.
Hence I ∧ Î gives us the desired set Ii.

Informally, A is a partial expansion of the game formula
induced by T̃ . It is satisfiable iff there exists a spoiling en-
vironment strategy from Î against abstract game tree T̃ . B
is a partial expansion of the game induced by Ti. It is satis-
fiable iff there exists a spoiling environment strategy against
Ti. Both A and B can be satisfiable individually, but their
conjunction is unsatisfiable.

The interpolant I of A and B implies ¬B, i.e., for any
state in I, ai is a winning move. I is also implied by A,
i.e., it contains all states in I where the controller cannot
win by picking moves from T̃ as a subset. Equivalently, for
any state in Ii ∧ ¬I, the controller can win by following T̃ ,
i.e., T̃ is a certificate tree for Ii ∧ ¬I, and we can apply the
decomposition again to T̃ and Ii ∧ ¬I at the next iteration.

We prove useful properties of the PARTITION function.
First, we show that A and B indeed form a conjunctive de-
composition of ET̂ (Î).

Proposition 2 A ∧B = ET̂ (Î).

Proof: A ∧ B = ET̃ (Î) ∧ ETi
(>) = Î ∧ ψroot(T̃) ∧ > ∧

ψroot(Ti) = Î ∧ (ψroot(T̃)∧ψroot(Ti)) = Î∧ψT̂ = ET̂ (Î). �

Proposition 3 The following invariant is maintained
throughout the execution of PARTITION: T̂ is a certificate
tree for Î .

Proof: We prove by induction. The invariant holds for the
initial assignments of T̂ and Î . By Proposition 2 and induc-
tion hypothesis, A ∧B = ET̂ (Î) is unsatisfiable. Hence the
interpolation operation in line 8 is well defined. By the prop-
erties of interpolants, (A =⇒ I(sv)), hence (¬I(sv) =⇒
¬A) or equivalently (¬I(sv) =⇒ ¬ET̃ (Î)).

After T̂ and Î are updated in line 10, their new values T̂ ′

and Î ′ satisfy the following equalities: ET̂ ′(Î ′) = ET̃ (Î ∧
¬I(s)) = ¬I(sv) ∧ ET̃ (Î) =⇒ ¬ET̃ (Î) ∧ ET̃ (Î) = ⊥
and hence the invariant is maintained.�

Proposition 4 Let T be a certificate tree for I and let I ∧
O = ⊥. Then [(T1, I1), . . . , (Tj , Ij)] = PARTITION(T, I) is

Algorithm 3 Successor set

1: function NEXT(T, I)
2: T ′ ← subtree(T, 1)
3: v ← root(T)
4: [(e, a, v′)]← edges(v)
5: A← I(sv) ∧∆(sv, ce, ue, sv′) ∧ ce = a
6: B ← ET ′(>)
7: I(sv′)← Interpolant(A,B)
8: return (T ′, I(s))
9: end function

a local winning strategy in the root of T , i.e., the following
properties hold:

1. Sets I1, . . . , Ij comprise a partitioning of I: I =
∨
Ii

and ∀i, k.(i 6= k) =⇒ Ii ∧ Ik = ⊥
2. Ti is a certificate tree for Ii, for all i ∈ [1, j]

Proof: At every iteration of the algorithm, we partition Î
into Ii = I ∧ Î and Î ∧ ¬I; hence different sets Ii do not
overlap by construction.

At the final iteration of the algorithm, the tree T̃ consists
of a single root node without outgoing branches. Hence,
A = ET̃ (Î) = Î(sv) ∧ ¬O(sv) = Î(sv). Since (A =⇒
I(sv)), we get (Î =⇒ I(s)) and therefore I(s) ∧ Î = Î ,
i.e., all states in Î are included in the final set Ij and hence
the partitioning completely covers set I: I =

∨
Ii.

We prove the second statement of the proposition. The
set Ii is computed as I(s) ∧ Î (line 9) at the ith iteration of
the algorithm. Thus, ETi

(Ii) = ETi
(I(s) ∧ Î) = I(s) ∧

Î ∧ ETi
(>). By the properties of interpolants, I(s) ∧ B =

I(s) ∧ ETi(>) = ⊥. Hence ETi(Ii) = ⊥, i.e., Ti is a
certificate tree for Ii. �

NEXT

The NEXT function (Algorithm 3) takes a set I and its cer-
tificate tree T , such that there is exactly one outgoing edge,
labelled a, from the root node of T . T has a sole child sub-
tree T ′ with root node v′. The function computes an overap-
proximation I ′ of the a-successor of I , such that I ′ is win-
ning for the controller and T ′ is a certificate tree for I ′.

Once again, we decompose the unsatisfiable formula
ET (I) into two conjuncts A and B. A encodes one round
of the game from the set I , where the controller plays ac-
tion a. B = ET ′(>) is a partial ∀-expansion of the game
induced by T ′. A and B only share state variables sv′ and
their interpolant gives the approximation we are looking for.

Proposition 5 Let T be a certificate tree for I with a single
outgoing edge, labelled a in its root node, and let (T ′, I) =
NEXT(T, I). Then:

1. I is an overapproximation of the a-successor of I , i.e.,
I ⊇ succ(I, a)

2. T ′ is a certificate tree for I ′

Proof: We rewrite formula (1) in the symbolic form:
succ(I, a) = ∃sv, ue.I(sv) ∧ ∆(sv, ce, ue, sv′) ∧ ce = a.

Algorithm 4 Compiling the winning strategy

1: function COMPILESTRAT(Strat)
2: π ← ⊥, W ← ⊥
3: for (I, a, k) ∈ Strat do . Sorted by ascending k
4: π ← π ∨ (I ∧ ¬W ∧ (c = a))
5: W ←W ∨ I
6: end for
7: return π
8: end function

The matrix of this formula is exactly formula A. Hence
succ(I, a) = ∃sv, ue.A. Since (A =⇒ I(sv′)),
succ(I, a) =⇒ ∃s, u.I(sv′). Since I is defined
over state variables only, the quantifiers can be removed:
succ(I, a) =⇒ I(sv′) or, in the relational form, I ⊇
succ(I, a). We prove the second property: ET ′(I) =
I(sv′) ∧ ET ′(>) = I(sv′) ∧B = ⊥. �

Compiling the strategy
Finally, we describe how local strategies computed by GEN-
LOCALSTRATS are combined into a winning strategy for the
game. This requires some care, as individual partial strate-
gies can be defined over overlapping sets of states. We want
the resulting strategy function to be deterministic; therefore
for each partial strategy we only add new states not yet cov-
ered by the computed combined strategy. Function COM-
PILESTRATS (Algorithm 4) achieves this by keeping track
of all states W already added to the strategy. For every new
tuple (I, a, k), it restricts the set I to ¬W , which guarantees
that no state can be added to the strategy twice. Furthermore,
by considering tuples with smaller values of k first, we re-
solve the nondeterminism in a way that guarantees progress
towards the goal at every round of the game.

Let rank(s), s ∈ S, be the smallest k such that there ex-
ists (I, a, k) ∈ Strat, s ∈ I , or∞ if there is no such k.

Proposition 6 Let π = COMPILESTRAT(Strat). For any
pair (s, a) ∈ π, there exists (I, a, k) ∈ Strat such that
s ∈ I and k = rank(s).

Theorem 1 (Correctness of the algorithm) Let abstract
game tree T of height n be a certificate tree for the set I , let
π be a partial function returned by the strategy generation
algorithm, π = GENSTRATEGY(T, I), and let π′ be an
arbitrary extension of π to a complete function. Then π′ is
a winning controller strategy of length n from I .

Proof: Every state-action pair (s, a) in π is generated by
the PARTITION function and, according to Proposition 4, a
is a winning controller move in s. By Proposition 5, all pos-
sible a-successors of s are either goal states or are covered
by π. Hence, by following the strategy π from I , the con-
troller is guaranteed to stay within the winning region of the
game until reaching the goal.

Next, we show that ranks of states visited by follow-
ing the strategy π decrease monotonically and hence the
strategy reaches the goal in at most n steps. According
to Proposition 6, for every pair (s, a) ∈ π, there exists
(I, a, k) ∈ Strat, such that k = rank(s). Therefore,

for any s′ ∈ succ(s, a), such that s′ 6∈ O, there exists
(I ′, a′, k − 1) ∈ Strat, s′ ∈ I ′; hence rank(s′) ≤ k − 1 <
k = rank(s). �

5 Evaluation
We implemented our strategy generation algorithm as an ex-
tension on top of EVASOLVER. We use PeRIPLO (Rollini
et al. 2014) to generate interpolants in Algorithms 2–3. We
use BDDs to compile and store winning sets W in Algo-
rithm 2 (Somenzi 2014). EVASOLVER implements an im-
portant optimisation whereby it generates multiple certifi-
cate trees for fragments of the original game, which enables
computational learning of winning states. Our strategy gen-
eration algorithm is invoked in an online fashion, whenever
EVASOLVER computes a certificate tree for a fragment. This
results in multiple partial strategies, where each strategy is
computed as described in the previous section. We intro-
duce an additional final step to EVASOLVER, which com-
bines partial strategies into a global winning strategy for the
original game.

We evaluate our implementation on driver synthesis
benchmarks from (Narodytska et al. 2014). These bench-
marks model the data path of four I/O devices in the ab-
stracted form. Each specification was parameterised to scale
in the size of the state space and the winning strategy length.
The four families are UART, SPI, IDE and Ethernet, which
model respectively the send queue of a UART serial device,
the command queue of an SPI device, the DMA descriptor
list of an IDE controller, and the transmit buffer of an Eth-
ernet device respectively. On two of these families, namely
SPI and Ethernet, EVASOLVER outperforms a state-of-the-
art BDD-based game solver.

Figure 5 summarises our results. For each family, we
show strategy generation time as a function of the number
of state variables in the specification for 5 hardest instances
of the family solved by EVASOLVER. Specifically, we show
the time it took the base solver to determine the winner
(the WD line), as well as the total time taken to solve the
game and compute the winning strategy using our algorithm
(WD+Strategy).

Profiling showed that non-negligible overhead was intro-
duced by transferring CNFs from EVASOLVER’s internal
representation to the representation used by the interpola-
tion library. This overhead can be almost completely elim-
inated with additional engineering effort. Hence, we also
show the effective time spent solving the game and comput-
ing the strategy, excluding the formula translation time (the
Effective Time line).

Table 1 shows a detailed breakdown of experimental
results, including the number of state variables for each
instance (Vars) and the total time taken by the solver
(Total(s)), split between the time used to determine the win-
ner (and generate certificate trees) (Base(s)) and the strategy
generation time (Strategy(s)). The OH and EffOH columns
show total and effective overheads introduced by the strat-
egy generation step. The Size column shows the size of the
strategy, i.e., the number of (W,a, k) tuples returned by the
GENLOCALSTRATS function. The last three columns report
on our use of the PeRIPLO interpolation library in terms of

26 28 30 32 34
0

100

200

300

State variables

T
im

e
(s

)

Winner Determination(WD)
WD + Strategy
WD + Strategy(Effective time)

(a) IDE

35 36 37 38 39
0

2000

4000

6000

8000

State variables

(b) UART

106 113 120 127 134
0

500

1000

1500

2000

2500

State variables

T
im

e
(s

)

(c) SPI Flash

38 41 44 47 50
0

500

1000

1500

State variables

(d) Ethernet
Figure 5: Performance of strategy extraction algorithm on
four parameterised benchmarks. The X-axis shows the
number of state vars in the game.

Vars Total(s) Base(s) Strategy(s) OH EffOH Size INum IAvg IMax
IDE benchmark

26 32.62 25.42 7.20 1.28 1.16 50 48 1193 (23) 24155 (118)
28 42.20 35.49 6.72 1.19 1.10 59 52 2489 (27) 39384 (119)
30 60.04 51.93 8.11 1.16 1.08 92 43 72 (17) 1583 (148)
32 115.11 107.35 7.77 1.07 1.04 60 36 18 (14) 85 (27)
34 283.08 227.67 55.40 1.24 1.21 159 49 2150 (15) 103941 (38)

SPI benchmark
15 0.35 0.26 0.09 1.36 1.26 8 5 11 (9) 21 (9)
22 0.94 0.72 0.22 1.31 1.19 15 12 10 (10) 22 (18)
29 2.46 1.90 0.56 1.29 1.16 22 17 12 (10) 25 (18)
36 3.56 2.91 0.65 1.22 1.11 107 22 11 (10) 22 (18)
43 9.11 7.09 2.03 1.29 1.13 166 27 11 (10) 21 (14)
50 16.20 12.85 3.35 1.26 1.12 233 32 11 (11) 23 (18)
57 25.00 19.86 5.14 1.26 1.12 322 37 12 (11) 21 (18)
64 38.48 31.48 7.00 1.22 1.10 416 42 12 (11) 24 (18)
71 57.88 47.94 9.94 1.21 1.09 70 47 12 (12) 21 (18)
78 91.51 75.02 16.49 1.22 1.10 636 52 12 (12) 22 (19)
85 141.10 116.71 24.39 1.21 1.09 773 57 13 (12) 23 (20)
92 193.96 162.05 31.91 1.20 1.09 917 62 13 (13) 24 (21)
99 309.44 256.88 52.55 1.20 1.09 1059 67 13 (13) 22 (22)

106 449.49 377.48 72.00 1.19 1.09 1223 72 13 (13) 23 (23)
113 1645.44 1543.84 101.60 1.07 1.03 117 77 14 (13) 24 (24)
120 901.95 830.17 71.77 1.09 1.04 1637 82 14 (14) 25 (25)
127 2259.65 2143.40 116.25 1.05 1.02 139 87 14 (14) 26 (26)
134 2385.74 2193.65 192.09 1.09 1.04 152 92 14 (14) 27 (27)

Ethernet benchmarks
14 0.06 0.03 0.02 1.60 1.52 2 1 24 (13) 24 (13)
17 0.49 0.29 0.20 1.70 1.45 21 7 33 (16) 87 (30)
20 1.97 1.14 0.82 1.72 1.45 176 15 41 (16) 110 (26)
23 5.39 3.23 2.16 1.67 1.39 185 25 64 (23) 180 (42)
26 14.61 7.94 6.66 1.84 1.48 266 36 100 (24) 347 (45)
29 27.41 15.71 11.70 1.74 1.43 677 44 155 (24) 779 (48)
32 58.02 35.38 22.64 1.64 1.36 208 61 136 (28) 676 (55)
35 111.69 69.26 42.43 1.61 1.35 351 80 141 (31) 933 (75)
38 238.09 151.21 86.89 1.57 1.33 545 116 184 (32) 1081 (63)
41 513.61 321.78 191.82 1.60 1.34 1525 154 184 (35) 1123 (72)
44 845.51 530.68 314.83 1.59 1.34 2159 191 276 (37) 2253 (64)
47 903.79 590.19 313.60 1.53 1.30 1547 228 261 (38) 1780 (71)
50 1368.23 875.90 492.33 1.56 1.33 1670 236 372 (38) 2292 (85)

UART benchmarks
15 2.86 2.19 0.67 1.31 1.19 12 40 28 (6) 90 (14)
20 3.16 2.33 0.83 1.36 1.20 20 14 35 (12) 155 (23)
21 10.06 6.96 3.09 1.44 1.24 35 34 48 (9) 306 (26)
26 27.89 18.55 9.34 1.50 1.27 65 60 92 (13) 730 (41)
27 63.68 41.49 22.20 1.53 1.29 93 94 96 (13) 825 (44)
28 137.24 90.68 46.56 1.51 1.27 103 136 138 (13) 1356 (42)
29 270.66 178.75 91.92 1.51 1.27 134 184 212 (15) 2806 (47)
34 553.29 360.76 192.53 1.53 1.28 191 246 299 (16) 6360 (54)
35 938.68 612.63 326.05 1.53 1.28 285 307 258 (16) 7949 (69)
36 1525.99 995.25 530.74 1.53 1.28 410 382 348 (17) 6408 (62)
37 2464.13 1611.45 852.68 1.53 1.28 950 456 414 (18) 10592 (75)
38 3927.64 2577.39 1350.25 1.52 1.28 1223 546 504 (18) 34431 (74)
39 6030.77 4031.98 1998.79 1.50 1.26 674 633 608 (18) 29996 (72)

Table 1: Detailed experimental results.

the number of interpolation operations performed by the al-
gorithm when solving the instance, the average and the max-
imal size of interpolants returned by PeRIPLO. Numbers in
brackets show the size of the interpolant compiled to a BDD.

Our results show that strategy generation adds a modest
overhead to the base solver. Effective overheads are about

12% for IDE and SPI, about 35% for Ethernet and about
30% for UART. Most of this overhead is due to interpolant
computation. Moreover, experiments show that our algo-
rithm scales linearly with the time taken by the base solver
to determine the winner.

These results show that our algorithm is efficient, scal-
able and robust. The last property is particularly inter-
esting, as existing strategy extraction algorithms for tradi-
tional game solvers, based on winning set compilation, have
been reported to introduce significant variance across in-
stances (Bloem et al. 2014b; Bloem, Könighofer, and Seidl
2013). A conclusive comparison can only be performed
by evaluating both types of algorithms on a common set
of benchmarks. Such a comparison requires first extending
EVASOLVER to support unbounded safety and reachability
games and is part of the future work.

6 Related work
All existing strategy extraction algorithms for games were
developed for use with game solvers based on winning set
compilation (Bloem et al. 2007; 2014a). Such a solver gen-
erates a sequence of expanding state sets from which the
game can be reached in 1, 2, . . . steps. The task of the strat-
egy extraction algorithm is to compute a function that in ev-
ery winning state chooses a single move that forces the game
closer to the goal. In contrast, our strategy generation algo-
rithm does not require the game solver to compile winning
regions, but instead uses abstract game trees.

Another line of related work is strategy extraction algo-
rithms for QBFs used in QBF certification. QBF strategy
extraction methods are specific to the underlying proof sys-
tem used by the QBF search algorithm (Lonsing and Biere
2010; Egly, Lonsing, and Widl 2013; Goultiaeva, Gelder,
and Bacchus 2011). A strategy in a QBF is an oracle that,
given the history of moves played in the game, outputs the
next move for the winning player. An additional procedure
is required to convert this oracle into a memory-free strategy
function that maps a state to a controller move. Our work
can been seen as such a procedure for ∀Exp + Res proof
system based solvers (Janota and Marques-Silva 2013).

7 Conclusion and future work
Our results demonstrate that abstract game tree-based game
solvers admit an efficient strategy extraction procedure. As
such, they provide a new compelling argument for further
exploration of this promising approach to two-player games.
In particular, our ongoing work is focusing on extending this
approach to support a wider class of games, including un-
bounded reachability and safety games. This will enable us
to directly compare the performance of our strategy extrac-
tion algorithm against existing BDD and SAT-based tech-
niques (Bloem et al. 2014a).

References
Ansótegui, C.; Gomes, C. P.; and Selman, B. 2005. The
Achilles’ heel of QBF. In Veloso, M. M., and Kambhampati,
S., eds., AAAI, 275–281.

Beyersdorff, O.; Chew, L.; and Janota, M. 2014. On unification
of QBF resolution-based calculi. In Mathematical Foundations
of Computer Science 2014, volume 8635 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg. 81–93.
Bloem, R.; Galler, S.; Jobstmann, B.; Piterman, N.; Pnueli, A.;
and Weiglhofer, M. 2007. Specify, compile, run: Hardware
from PSL. ENTCS 190(4):3–16.
Bloem, R.; Egly, U.; Klampfl, P.; Könighofer, R.; and Lons-
ing, F. 2014a. SAT-Based Methods for Circuit Synthesis. In
FMCAD.
Bloem, R.; Egly, U.; Klampfl, P.; Könighofer, R.; and Lonsing,
F. 2014b. SAT-Based Methods for Circuit Synthesis. CoRR
http://arxiv.org/abs/1408.2333.
Bloem, R.; Könighofer, R.; and Seidl, M. 2013.
SAT-based synthesis methods for safety specs. CoRR
http://arxiv.org/abs/1311.3530.
Cassez, F.; Jessen, J. J.; Larsen, K. G.; Raskin, J.-F.; and
Reynier, P.-A. 2009. Automatic synthesis of robust and op-
timal controllers - an industrial case study. In HSCC, 90–104.
Egly, U.; Lonsing, F.; and Widl, M. 2013. Long-distance
resolution: Proof generation and strategy extraction in search-
based QBF solving. In McMillan, K. L.; Middeldorp, A.; and
Voronkov, A., eds., LPAR, volume 8312 of Lecture Notes in
Computer Science, 291–308. Springer.
Ehlers, R.; Könighofer, R.; and Hofferek, G. 2012. Symboli-
cally synthesizing small circuits. In Cabodi, G., and Singh, S.,
eds., FMCAD, 91–100. IEEE.
Goultiaeva, A.; Gelder, A. V.; and Bacchus, F. 2011. A uniform
approach for generating proofs and strategies for both True and
False QBF formulas. In IJCAI, 546–553.
Janota, M., and Marques-Silva, J. 2013. On propositional QBF
expansions and q-resolution. In SAT, 67–82.
Janota, M.; Klieber, W.; Marques-Silva, J.; and Clarke, E. M.
2012. Solving QBF with counterexample guided refinement. In
SAT, 114–128.
Jiang, J.-H. R.; Lin, H.-P.; and Hung, W.-L. 2009. Interpolating
functions from large boolean relations. In ICCAD, 779–784.
IEEE.
Lonsing, F., and Biere, A. 2010. Integrating dependency
schemes in search-based QBF solvers. In SAT, 158–171.
Narodytska, N.; Legg, A.; Bacchus, F.; Ryzhyk, L.; and Walker,
A. 2014. Solving games without controllable predecessor. In
CAV, 533–540.
Pudlak, P. 1997. Lower bounds for resolution and cutting plane
proofs and monotone computations. J. Symb. Log. 62(3):981–
998.
Rollini, S.; Bruttomesso, R.; Sharygina, N.; and Tsitovich, A.
2014. Resolution proof transformation for compression and in-
terpolation. Formal Methods in System Design 45(1):1–41.
Ryzhyk, L.; Walker, A. C.; Keys, J.; Legg, A.; Raghunath, A.;
Stumm, M.; and Vij, M. 2014. User-guided device driver syn-
thesis. In OSDI.
Sabharwal, A.; Ansotegui, C.; Gomes, C. P.; Hart, J. W.; and
Selman, B. 2006. QBF modeling: Exploiting player symmetry
for simplicity and efficiency. In SAT, 382–395.
Somenzi, F. 2014. CUDD: CU decision diagram package.
http://vlsi.colorado.edu/ fabio/CUDD/.

