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Abstract
We have recently described and evaluated a research proto-
type system (called XJ, for transactional Java) that allows ex-
ecution of Java programs extended with transactional memory
(TM) abstractions (Chapman et al. 2014, 2016). The system
allows mixed execution of these abstractions using both soft-
ware (STM) and hardware (HTM) transactional memory. The
prototype system, based on OpenJDK, suffers a number of
roadblocks impeding production use, including: (i) Per-object
metadata in support of manipulation of objects by transac-
tions is inserted via bytecode rewriting at load time, in the
form of a new word-sized instance field placed at the begin-
ning of each object; (ii) The HotSpot optimizing compilers
(C1 and C2) require gentle coaxing to compile both the STM
and HTM versions of methods via alternating execution in a
warm-up phase. Here we explore possible changes to Open-
JDK that would allow for more integrated support for TM
in HotSpot, as needed to support hybrid STM/HTM. These
changes include encoding per-object transactional metadata
in the synchronization word carried by all OpenJDK objects,
and integrating more effectively with the profiling and com-
pilation mechanisms of the HotSpot interpreter and compil-
ers. We believe that the proposed changes are incremental,
though we also expect that a deeper re-engineering would
yield somewhat better ability to tune synchronization hot-
paths for performance.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Concurrent
programming structures; D.3.4 [Programming Languages]:
Processors—code generation, compilers, incremental compil-
ers, run-time environments

Keywords nested transactions, hardware transactional mem-
ory, software transactional memory, Java

1. Introduction
We have recently built and evaluated a research prototype sys-
tem called XJ for execution of Java programs augmented with
transactional memory abstractions (Chapman et al. 2016).
That system relies on somewhat heavyweight mechanisms to
support transactional memory mechanisms on a mostly un-
modified OpenJDK platform. The bulk of the effort to make
Java code run transactionally in XJ was achieved via byte-
code and class rewriting at class load time. The only extension
to OpenJDK is to allow injection of Intel’s TSX hardware
transactional memory (HTM) instructions into execution of
interpreted and compiled code via HotSpot intrinsics. Two
particular shortcomings of that approach are the addition of
a transactional metadata word as an extra instance variable
in all objects, and some jumping through hoops to convince
the HotSpot optimizing compilers to compile HTM-enabled
transactions. We discuss both of these issues with respect
to OpenJDK and consider alternative implementations that
represent a tighter integration with the OpenJDK implemen-
tation for improved performance. We thus hope to obtain
feedback and promote useful discussion at the workshop.

2. Locking Protocol
XJ performs conflict detection at the level of objects, and
tracks writes at the level of fields using an undo log. In the
prototype STM implementation, each object carries an extra
transactional metadata field, which holds the lock for writes,
and otherwise contains a version number for the object, which
is incremented upon commit. However, in XJ HTM and STM
can safely co-exist and execute concurrently. Thus the two
mechanisms need to play well with each other. In general,
we adopt pessimistic concurrency control for writes, and
optimistic concurrency control for reads. When running under
STM, writes acquire a write lock on the object, which is noted
in the metadata field—only one transaction can write to the
object at a time. Readers proceed optimistically under STM,
simply logging the value of the metadata field (a version
number), and the log is then processed at commit time to
validate the transaction (if the logged version number does
not match the current value and the owner of a locked object
is not the current transaction then the transaction aborts).
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When running under HTM, writers commit by incrementing
the version number, thus invalidating conflicting STM readers
and conflicting with both HTM readers and writers. Reads
under HTM perform a check to make sure that the object
is not locked by another transaction, explicitly aborting if
necessary. In sum, the lock/version word “glues” together the
STM and HTM schemes into a coherent (and safe!) hybrid
TM. We now present details on how this locking protocol can
be integrated into OpenJDK, to be more efficient, rather than
having to rely on an extra field added to each object.

2.1 Integrating Per-Object Transactional Metadata
The XJ prototype uses byte-code rewriting at load time to
make every transactional application class inherit from a new
TransactionalObject class, which has the transactional
metadata word as its only instance field. Adding a field to
each transactional object is costly in space and also in time to
initialize and access the field. Ideally we would like this word
to be a part of the object header. In OpenJDK every object is
preceded by a class pointer (the “klass” word, which is native-
sized or 32 bits depending on the use of compressed object
pointers) and a header word. These are optionally followed
by a 32-bit length word (if the object is an array), a 32-bit
gap (if required by alignment rules), and then the object itself,
comprising zero or more instance fields, array elements, or
metadata fields. One option would have been to add another
word to the header to store the transactional metadata. This
would have worked well and is simple, but we want to do
even better in terms of space and performance. Instead, we
took a closer look at the format of the header word. Figure 1
shows the layout of the header word and how its contents
evolve during the standard locking/unlocking process of Java
object synchronization expressed using the synchronized
keyword.

The most significant bits of the header word typically
store multiple pieces of information as shown in Figure 1.
These bits represent a hash code when the object is hashed,
a thread id when the object is biased locked, a pointer to a
lightweight lock, or a pointer to a heavyweight lock. The
three lowest-order bits of the header word indicate which
pieces of information the header holds. When an object is
created and initialized it resides in the unlocked state (the
most significant bits store no information). From this state
an object can either transition to a hashed state or a biased
locked state. If an object is hashed and a lock is requested
(or vice versa), the object then transitions to a lightweight
lock (the hash code and the thread id are moved into a lock
record allocated on the stack). Lightweight locked objects
that become subject to contention when another thread tries to
lock them are “inflated”: the object moves into a state where
it refers to a heavyweight lock.

Transactions can be seen as an alternative method to
achieve the same effect as synchronized: atomic updates to
objects. It is reasonable to assume that any particular object
is unlikely to be locked using both mechanisms, at least not

at the same time. Thus an object that is participating in a
transaction will not typically undergo all the states shown
in Figure 1. We took this into account and tried to devise a
mechanism to store the transactional meta-data in the existing
header word. To do this we need a bit to indicate that the
object is locked in transactional mode. We observed that
we could accomplish this by enforcing 8-byte alignment on
the “pointer to lock record” and the “pointer to heavyweight
monitor”. This gives us an extra bit to indicate that the object
is being manipulated in transactional mode. Figure 2 shows
how the contents of the mark word evolve under this scheme.

The proposed scheme allows us to store the transactional
meta-data in the existing object header word, as long as the
object remains unhashed and is not synchronized. Our ap-
proach allows efficient access to the transactional meta-data
for the object when it is stored in the header word. This is the
most common case, and our proposed scheme is optimized
for it. One bit of the transaction meta-data is used to indicate
if the value stored is a transaction id (to indicate that the
object is write locked) or its transactional version number.
If a hash code is requested for a transactional object, or it
becomes synchronized, then the transactional meta-data
will be moved to a heavyweight monitor (“fat lock”). The
monitor will be augmented with a field to be used as the
lock/version for transactions. It need not incur all the over-
head of a standard object monitor except when used (in the
rare case) for both transactional access and synchronized
manipulations. If an unhashed object is unlocked then the
transactional meta-data will be moved back into the header
word making it more efficient.

2.2 Handling Statics
Integrating the transactional metadata into the object header
word solves the transactional locking issue for instance fields
of an object, but it does not address static fields of a class.
We need to handle statics separately. In the XJ prototype
this was done by moving the static fields into a separate
static singleton object, which allowed us to use the same
locking scheme used for instance fields on the static fields.
For our modified OpenJDK VM we propose to have a distinct
static field (a synthetic field) to hold the transaction metadata
for the static fields of the object. The proposed scheme
can be extended to have a distinct lock word for disjoint
subsets of the statics, if that added complexity offers enough
performance advantage. This might increase concurrency and
could be easily implemented via an annotation, similar to the
existing @Contended annotation, on a group of static fields.

2.3 Handling Arrays
Using a single lock to protect a whole array does not scale
in general since it will become a concurrency bottleneck.
The XJ prototype injects wrapper classes at class load time
for arrays, but we would prefer an integrated solution that
allocates arrays as arraylets. These have been used to good
advantage in real-time Java implementations (Siebert 2000;
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Figure 1. HotSpot standard synchronization
(reproduction under GPLv2 license of a figure appearing in Kotzmann and Wimmer (2008)).
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Figure 2. Proposed extension to the object header mark word

Bacon et al. 2003; Sartor et al. 2010; Pizlo et al. 2010). The
size of these segments could be specified by the user. The
integrated solution would allocate a transactional metadata
word for each arraylet, solving the concurrency bottleneck
issue for large arrays.

3. Interpreter and Compiler Concerns
As is well known, HotSpot has a byte-code interpreter as
well as two levels of optimizing just-in-time (JIT) compilers
(C1 and C2) that produce native code. Given the amount of
work that the interpreter does, the data structures it touches
and updates, etc., HTM will not work when interpreting byte-

codes. This is because Intel’s TSX hardware piggybacks on
caching protocols and thus has a limited buffer size causing
interpreted HTM transactions to fail due to buffer overflow.
However, STM transactions can execute in the interpreter.
HotSpot already uses reasonable heuristics to decide when
it might be profitable to generate and execute native code.
For transactional code, it might be useful to adjust those
heuristics a bit since, once code is JIT compiled, HTM may
be useful and HTM appears to run 5-10 times faster than
STM for successful HTM transactions. But our main point is
that HTM becomes interesting only for compiled code.

One of the main issues we encountered early on with
using HTM was that many transactions failed with result code
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0 (i.e., no specific reason given). Using the Intel Software
Development Emulator, we found these aborts to be caused
by execution of instructions that are incompatible with TSX—
FXRSTOR and FXSAVE (perhaps among others)—and which
are compiled into HotSpot’s run-time stubs that control
dynamic optimization and linking, and to resolve static
and virtual method calls. By design, the HotSpot compilers
patch these call sites at run time (Paleczny et al. 2001).
Thus our hardware transactions always failed, and those
failures prevented triggering of the patching mechanism.
Our workaround was to devise a mechanism to “warm” the
system up in STM mode before attempting any hardware
transactions. However, so that the compiler’s optimizations
will be triggered appropriately, and so that linking/patching
will occur, these STM transactions had to follow the same
code path (except for not using the TSX instructions) as HTM
transactions did. We used a global flag to indicate whether we
were in the software-only warm up phase, “weaving” together
STM and HTM in the same code sequence, with if-then-
else structure for each operation that HTM and STM handle
differently.

This “weaving” strategy allowed us to executed HTM
versions of methods in software to “snap links,” etc., as we
say. For example, a transaction might call some method m of
the application where m is not yet JIT compiled. The HotSpot
JIT compilers will insert a call to a stub routine that triggers
compilation of the target method m if it is called, or, if by
that time m has been compiled, will patch the stub to call the
compiled code for m. Both behaviors of a stub cause an HTM
transaction to fail, and unwind, thus not actually triggering
the compilation or link-snapping behavior. We thus needed
a way to execute the same stub under STM. Once the stub’s
behavior had been appropriately triggered, HTM would no
longer fail going through that code path. The stubs of which
we speak are examples of guards. We say a guard succeeds if
it follows a path where no special condition needs fixing up;
this will be a fast path. We say a guard fails when it follows a
path for a fix up; this will be a slow path.

Weaving together HTM and STM versions leads to code
that is probably slower than it can be, because of all the extra
if-then-else blocks. Granted, good branch prediction reduces
their cost some, but they still need to be executed and they
may stress the branch predictor. It would be better to generate
HTM code without these branches. We propose two ways to
do this: (i) returning some information from a failing HTM
transaction, and (ii) maintaining correlated HTM and STM
versions of the code.

3.1 Using HTM Failure Codes
As previously mentioned, failing guards will cause HTM
transactions to fail. This has the side-effect that the run-
time system then does not know a guard failed and thus
cannot fix it up. However, it turns out that an explicit abort
of an Intel HTM transaction with the XABORT instruction can

pass 8 bits of information back in the EAX register.1 So, if
a piece of code running under HTM has no more than 256
guards, the compiler could use the 8-bit code in the XABORT
instruction to indicate which guard failed. This may allow a
future execution of the transaction to succeed. (We say “may”
because a future execution is not guaranteed to follow the
same path through the code.)

But what if the HTM code region has more than 256
guards? This could happen in the presence of calls, etc. Here
is a scheme to exploit multiple transaction attempts to extract
more bits from the failing transactions and narrow down the
set of failing guards to the one on which the system should
act. First, we assume that there is a per-thread location (it
could even be a register) that will indicate which retry of an
HTM transaction with a failing guard we are on, and some
previously returned information. The attempt number will
initially be 0, will be 1 on the first retry, etc. The essence of
the scheme is this. We assign each guard a unique number. We
develop k hash functions (k is likely 4, given the particulars
of our scheme), h0 through hk−1. On attempt j of a failing
guard in a hardware transaction, we return h j(i) where i is
the unique id of the failing guard. These hash function return
a seven bit value. The eighth bit we use to indicate whether
we are continuing or starting over. On attempts after the first,
we check a failing guard’s previous hash values against those
noted as being returned by previous attempts. If they match,
we indicate that and return the hash value for the current
attempt. If they don’t match, we indicate that and return
h0(i). If we get through four attempts with matches, we will
have 28 bits to identify a particular guard. In many cases we
might need even fewer, but the scheme generalizes to extract
any number of bits, at the cost of additional retries and the
increasing risk that we may go down a different code path
(depending on the nature of the transaction and of the guard).
Notice that the hash codes can simply be groups of seven bits
from the guard’s unique number, which probably makes for
simple code.

This scheme assumes that all we need to know is which
guard failed. When updating a polymorphic inline cache (for
example), we may desire to know which class was presented
that was not in the cache. The same approach can be taken to
extract more bits. An alternative would be to have code that
would figure out which object’s class was being dispatched on,
etc. This could get complicated, so returning the information
directly (if incrementally) may be simpler. It is certainly more
general.

3.2 Maintaining Correlated Code Versions
An alternative to using the HTM failure codes is to maintain
STM and HTM versions that have the same guards. This
is like taking XJ’s code and pulling out a version with all

1 As an aside to designers of future hardware, we observe that it appears
useful to be able to return more bits, and possibly even to have a memory
region not subject to HTM semantics in which one could store “side” results
of a failing transaction.
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the “then” clauses of the HTM-STM if-then-else blocks, and
another version with all the “else” clauses. Whenever an
action is taken on a guard in one version of the code, we force
the same action to occur on the other version. Thus, if the
HTM code fails in a guard—a fact that can be indicated with
just one distinguished result code value—we can run the STM
version and if a guard fails, it will be fixed in both versions
and we can try HTM the next time. If the HTM version
can usefully indicate which guard failed (i.e., there are not
too many guards, and the particular one does not require
additional information), then the result code can be used to
fix the guard in both versions and HTM retried. However,
handling a failing guard is probably quite costly compared
with the work that can succeed in an HTM transaction, and
even compared with an STM version of that same work, so
always running the STM version to trigger guard fixing is a
reasonable strategy.

3.3 Further Optimizations
In XJ we supported hand annotation of various actions in a
transaction, to enable us to elide locking or logging work.
This is particularly applicable to STM code, since HTM
inherently avoids some of the work, but it is also relevant to
HTM code. We envisioned a byte-code optimizer that would
perform the needed data flow analyses and then rewrite the
byte-code (or insert the annotations). This could be done
as an additional optimization pass in HotSpot, particular to
transaction code.

4. Conclusions
The changes to OpenJDK that we have proposed here are
intended to be non-intrusive, though we recognize several
opportunities for deeper re-engineering. First, our proposal
to overload the existing object header word also to include
transactional metadata attempts to leave the code sequences
for other uses of that word unchanged. We introduce only
one case-split on the extra bit that distinguishes transactional
from other metadata. However, we expect that the trade-offs
inherent in the current design may change as developers more
regularly exploit transactional memory. There are alternatives
to the existing biased locking design that may spare some
bits in the header and allow a more compact representation of
both transactional and synchronization metadata (Pizlo et al.
2011). Second, the arraylet scheme would be more effective
for concurrency on arrays, and could be useful even in the
non-transactional case.

We also show how the HotSpot optimizing compilers can
be modified to be aware of transactions, such that HTM
can be used in production. We propose two complementary
modifications to the compiler that avoid having to warm
the system up prior to using HTM. We also discuss other
optimizations that the compiler could perform on HTM
methods.

We hope that the thought experiment represented by this
position paper will provoke discussion and feedback, and
look forward to the workshop accordingly.
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