
Bernard Blackham  and Gernot Heiser

NICTA and University of New South Wales
Sydney, Australia

Correct, Fast, Maintainable:
Choose Any Three!

Tuesday, 24 July 2012



© NICTA 2012

What programmers want

Correctness

Speed Sanity

Utopia?

2

Tuesday, 24 July 2012



© NICTA 2012

What programmers do

Too slow?

Write

Debug

Optimise

Pub (호프)!

Fast 
enough?

Yes!

No :(Fast 
enough?

3

Tuesday, 24 July 2012

http://en.wiktionary.org/wiki/%ED%98%B8%ED%94%84#Korean
http://en.wiktionary.org/wiki/%ED%98%B8%ED%94%84#Korean


© NICTA 2012

What programmers do

Too slow?

Write

Debug

Rewrite in assembly
Pub (호프)!

Yes!

No :(Fast 
enough? Optimise

4

Tuesday, 24 July 2012

http://en.wiktionary.org/wiki/%ED%98%B8%ED%94%84#Korean
http://en.wiktionary.org/wiki/%ED%98%B8%ED%94%84#Korean


© NICTA 2012

When to use assembly?

Programmers (should) use assembly as as last resort when:
‣ higher level languages are not sufficient
‣ they have the know-how to do better in assembly
‣ they have little mercy for those who follow

5

Tuesday, 24 July 2012



© NICTA 2012

When to use assembly?

Programmers (should) use assembly as as last resort when:
‣ higher level languages are not sufficient
‣ they have the know-how to do better in assembly
‣ they have little mercy for those who follow

5

Tuesday, 24 July 2012



© NICTA 2012

When to use assembly?

Programmers (should) use assembly as as last resort when:
‣ higher level languages are not sufficient
‣ they have the know-how to do better in assembly
‣ they have little mercy for those who follow

   We claim:
‣ Modern compilers are often smarter than we think
‣ Many assembly optimisation techniques can be performed in C

5

Tuesday, 24 July 2012



© NICTA 2012

A brief history of L4...

• L4 microkernels emphasise fast IPC message-passing

¥ IPC performance is the Master

Anything which may lead to higher IPC 
performance has to be discussed.

In case of doubt, decisions in favour of IPC have 
to be taken.

Ð Jochen Liedtke (1993)    .

6

Tuesday, 24 July 2012



© NICTA 2012

A brief history of L4...

1993 First L4 kernel written entirely in assembly

1999 L4Ka::Hazelnut written in C/C++
IPC fastpaths hand-coded in assembly

7

Tuesday, 24 July 2012



© NICTA 2012

A brief history of L4...

1993 First L4 kernel written entirely in assembly

1999 L4Ka::Hazelnut written in C/C++
IPC fastpaths hand-coded in assembly

Fastpaths: dedicated code path
that optimises the common-case

8

Tuesday, 24 July 2012



© NICTA 2012

The ÒslowpathÓ 

9

Tuesday, 24 July 2012



© NICTA 2012

�/��

�6

�/��

10

Tuesday, 24 July 2012



© NICTA 2012

A brief history of L4...

1993 First L4 kernel written entirely in assembly

1999 L4Ka::Hazelnut written in C/C++
IPC fastpaths hand-coded in assembly

2007 seL4 implementation written in C
IPC fastpaths written in C

More L4 µ-kernels, all C/C++ with fastpaths in assembly...

11

Tuesday, 24 July 2012



© NICTA 2012

A brief history of L4...

1993 First L4 kernel written entirely in assembly

1999 L4Ka::Hazelnut written in C/C++
IPC fastpaths hand-coded in assembly

2007 seL4 implementation written in C
IPC fastpaths written in C

More L4 µ-kernels, all C/C++ with fastpaths in assembly...

11

How much performance does a fastpath in C 
compromise over a fastpath in assembly?

Tuesday, 24 July 2012



f001003c <fastpath_call>:
f001003c:   e59f21f4    ldr r2, [pc, #500]  ; f0010238 <fastpath_call+0x1fc>
f0010040:   e1a03b81    lsl r3, r1, #23
f0010044:   e3530402    cmp r3, #33554432   ; 0x2000000
f0010048:   e592c000    ldr ip, [r2]
f001004c:   e92d4080    push    {r7, lr}
f0010050:   e59c3054    ldr r3, [ip, #84]   ; 0x54
f0010054:   8a000075    bhi f0010230 <fastpath_call+0x1f4>
f0010058:   e2133007    ands    r3, r3, #7
f001005c:   1a000073    bne f0010230 <fastpath_call+0x1f4>
f0010060:   e51c4100    ldr r4, [ip, #-256] ; 0xffffff00
f0010064:   e51ce0fc    ldr lr, [ip, #-252] ; 0xffffff04
f0010068:   e204500f    and r5, r4, #15
f001006c:   e3550005    cmp r5, #5
f0010070:   1a00006e    bne f0010230 <fastpath_call+0x1f4>
f0010074:   e20e653e    and r6, lr, #260046848  ; 0xf800000
f0010078:   e1a07310    lsl r7, r0, r3
f001007c:   e1b05ba6    lsrs    r5, r6, #23
f0010080:   0a000004    beq f0010098 <fastpath_call+0x5c>
f0010084:   e2658020    rsb r8, r5, #32

void
fastpath_call(word_t  cptr, word_t  msgInfo)
{
    message_info_t  info = message_info_set_msgCapsUnwrapped(
            messageInfoFromWord_nolencheck(msgInfo), 0);
    uint32_t  length = message_info_get_msgLength(info);
    uint32_t  fault_type = fault_get_faultType(curThread->fault);

    /* Check there's no extra caps, the length is ok and
     * thereÕs no saved fault. */
    if  (unlikely(fastpath_mi_check(msgInfo) ||
                fault_type != fault_null_fault)) {
        slowpath(SysCall);
    }
    /* Lookup the cap */
    cap_t ep_cap = lookup_fp(
        TCB_PTR_CTE_PTR(ksCurThread, tcbCTable)->cap, cptr);
    /* Check it's an endpoint */
    if  (unlikely(cap_get_capType(ep_cap) != cap_endpoint_cap ||
                !cap_endpoint_cap_get_capCanSend(ep_cap))) {
        slowpath(SysCall);
    }

© NICTA 2012

How to optimise C code?

Determine correspondence between C and assembly:

For each instruction, ask:
‣ Why is it there? (what C code generated it?)
‣ Is it needed? (either superfluous or redundant?)
‣ Is it causing any pipeline stalls?
‣ Can the same effect be achieved faster?
‣ What prevents the compiler from doing so?

12

Tuesday, 24 July 2012



© NICTA 2012

Simple examples

• Unnecessary sign-extension, zero-extension
– Caused by using char, short and signed types unnecessarily

• Unnecessary bit-masking

• Unnecessary branches
– Use compiler branch hints to optimise code placement

• Stack spilling
– Re-write complex expressions

(help with common subexpression elimination)

• Function calls (e.g. for machine-specific assembly)
13

Tuesday, 24 July 2012



© NICTA 2012

More examples: avoiding pipeline stalls

14

ldr r0, [r4]
and r3, r0, #3
cmp r3, #1
beq slowpath
ldr r3, [ip, #-208]
cmp r3, #0
beq slowpath

...

/* Check endpoint is not in send state. */

if ((endpoint & 0x3) == 0x1) goto slowpath;

/* Check that the caller cap is valid. */
callerCap = *callerCapPtr;
if (callerCap == 0) goto slowpath;

...

endpoint = *endpointPtr;

Tuesday, 24 July 2012



© NICTA 2012

More examples: avoiding pipeline stalls

14

ldr r0, [r4]
and r3, r0, #3
cmp r3, #1
beq slowpath
ldr r3, [ip, #-208]
cmp r3, #0
beq slowpath

stall x 2

stall x 2

...

/* Check endpoint is not in send state. */

if ((endpoint & 0x3) == 0x1) goto slowpath;

/* Check that the caller cap is valid. */
callerCap = *callerCapPtr;
if (callerCap == 0) goto slowpath;

...

endpoint = *endpointPtr;

Tuesday, 24 July 2012



© NICTA 2012

More examples - avoiding pipeline stalls

15

ldr r0, [r4]
ldr r3, [ip, #-208]
and r5, r0, #3
cmp r5, #1
beq slowpath
cmp r3, #0
beq slowpath

...

/* Check endpoint is not in send state. */
if ((endpoint & 0x3) == 0x1) goto slowpath;
/* Check that the caller cap is valid. */

callerCap = *callerCapPtr;

if (callerCap == 0) goto slowpath;

...

endpoint = *endpointPtr;

Tuesday, 24 July 2012



© NICTA 2012

More examples - avoiding pipeline stalls

15

ldr r0, [r4]
ldr r3, [ip, #-208]
and r5, r0, #3
cmp r5, #1
beq slowpath
cmp r3, #0
beq slowpath

stall x 1
...

/* Check endpoint is not in send state. */
if ((endpoint & 0x3) == 0x1) goto slowpath;
/* Check that the caller cap is valid. */

callerCap = *callerCapPtr;

if (callerCap == 0) goto slowpath;

...

endpoint = *endpointPtr;

Tuesday, 24 July 2012



© NICTA 2012

Was it worth it?

16

Original

C-optimised

Asm-optimised

OKL4 (assembly)

Theoretical limit

0 80 160 240 320

240

246

281

200

200

308

gcc 4.6.1
armcc 5.01

cycles

Time for one-way IPC via fastpath

Original

C-optimised

Asm-optimised

OKL4 (assembly)

Theoretical limit

0 80 160 240 320

163

206

Tuesday, 24 July 2012



© NICTA 2012

Was it worth it?

• Optimisation effort comparable, if not easier

• Performance is compiler dependent
– Optimisations can be used by all compilers

• Correctness is obscured
– Still better than assembly

• Source is less maintainable?
– comments are good!

17

Tuesday, 24 July 2012



© NICTA 2012

Some limitations apply*

‣ RISC instruction sets
‣ Single-issue pipeline
‣ Register-rich architecture
‣ Heavily control-oriented code

18

* Our claims hold for:

Room for more optimisation:
• repurpose sacred registers
• discarding stack completely

Tuesday, 24 July 2012



© NICTA 2012

Lessons learnt

• Modern compilers are awesome!

¥ Verification and performance are not necessarily at odds

• Applying assembly optimisation techniques to C sources can 
achieve near-optimal results*

19

bernard.blackham@nicta.com.au

Tuesday, 24 July 2012


