Correct, Fast, Maintainable:

Choose Any Three! NICiA

Bernard Blackham and Gernot Heiser

NICTA and University of New South Wales

Sydney, Australia ‘

NICTA Funding and Supporting Members and Partners

iy i o S UNsw i

Department of Broadband, Communications 52T Umvetsny ne ey G
and the Digital Economy

Australian Research Council ? SYDNEY

Tvsement

Tuesday, 24 July 2012



Conrectnesss

© NICTA 2012 2

Tuesday, 24 July 2012



,\‘
L\(

T —

What programmers do

Write

Debug

Fast No :(
enough?

Optimise

Yes!

Pub (=x)!

© NICTA 2012 3

Tuesday, 24 July 2012


http://en.wiktionary.org/wiki/%ED%98%B8%ED%94%84#Korean
http://en.wiktionary.org/wiki/%ED%98%B8%ED%94%84#Korean

What programmers do

Write

Debug

© NICTA 2012

Tuesday, 24 July 2012

Optimise

Rewrite In assembly

NICTA


http://en.wiktionary.org/wiki/%ED%98%B8%ED%94%84#Korean
http://en.wiktionary.org/wiki/%ED%98%B8%ED%94%84#Korean

When to use assembly? NICTA

Programmers (should) use assembly as as last resort when:
» higher level languages are not sufficient
» they have the know-how to do better in assembly
» they have little mercy for those who follow

Tuesday, 24 July 2012



e ——

—\-_
When to use assembly? NICTA

Programmers (should) use assembly as as last resort when:
» higher level languages are not sufficient
» they have the know-how to do better in assembly
» they have little mercy for those who follow

Tuesday, 24 July 2012



— - (Je

When to use assembly? NICTA

Programmers (should) use assembly as as last resort when:
» higher level languages are not sufficient
» they have the know-how to do better in assembly
» they have little mercy for those who follow

We claim:
» Modern compilers are often smarter than we think
» Many assembly optimisation techniques can be performed in C

Tuesday, 24 July 2012



* L4 microkernels emphasise fast IPC message-passing

¥ IPC performance is the Master

Anything which may lead to higher IPC
performance has to be discussed.

In case of doubt, decisions in favour of IPC have
to be taken.

b Jochen Liedtke (1993)

Tuesday, 24 July 2012



A brief history of L4...

1993 First L4 kernel written entirely in assembly

1999 L4Ka::Hazelnut written in C/C++
|IPC fastpaths hand-coded in assembly

v

Tuesday, 24 July 2012



- — —— — o ——— O .
A brief history of L4... NICTA
1993 First L4 kernel written entirely in assembly
1999 L4Ka::Hazelnut written in C/C++

|IPC fastpaths hand-coded in assembly

Fastpaths: dedicated code path

that optimises the common-case

v

Tuesday, 24 July 2012



The OslowpathO
’




__NICTA

10




A brief history of L4... NICTA

1993 First L4 kernel written entirely in assembly

1999 L4Ka::Hazelnut written in C/C++
|IPC fastpaths hand-coded in assembly

More L4 y-kernels, all C/C++ with fastpaths in assembly

2007 seL4 implementation written in C
|IPC fastpaths written in C

v

Tuesday, 24 July 2012

11



A brief history of L4...

How much performance does a fastpath in C

compromise over a fastpath in assembly?

2007 selL4 implementation written in C
|IPC fastpaths written in C

v

© NICTA 2012 11

Tuesday, 24 July 2012



_’_
‘_——----_____~\_
M _:Tx_—_:—_——— O ‘

—

How to optimise C code? NICTA

Determine correspondence between C and assembly:

void £f001003c <fastpath call>:
fastpath_call( cptr, msgInfo) £001003c: e59f21f4 ldr r2, [pc, #500] ; £0010238 <fastp:
{ . . £0010040: ela03b81  1sl r3, rl, #23
messageiﬂﬁﬁ&ﬁ@iiigiiii?ﬁiiiﬁigiiii?imrapped‘ £0010044: e3530402 cmp r3, #33554432  ; 0x2000000
length = message info get msgLength(info); £0010048: €592c000 ldr ip, [r2]
fault type = fault get faultType(curThread->fault); £001004c: €92d4080 push {r7, 1lr}
£0010050: e59c3054 ldr r3, [ip, #84] ; 0x54
£0010054: 8a000075 bhi £0010230 <fastpath call+0x1f4>
£0010058: e2133007 ands r3, r3, #7
(unlikely(fastpath mi_check(msgInfo) || £001005c:  1a000073  bne £0010230 <fastpath call+0x1f4>
t _type ! 11 1 _fault)) { EANTO00E0.  oB1~d 100 ldr r4, [ip, #-256] ; Oxffffffo00

For each instruction, ask:
» Why is it there? (what C code generated it?)
» Is it needed? (either superfluous or redundant?)
» Is it causing any pipeline stalls?
» Can the same effect be achieved faster?

» What prevents the compiler from doing so?
12

Tuesday, 24 July 2012



Simple examples NICTA

* Unnecessary sign-extension, zero-extension
— Caused by using char, short and signed types unnecessarily

* Unnecessary bit-masking

* Unnecessary branches
— Use compiler branch hints to optimise code placement

» Stack spilling
— Re-write complex expressions
(help with common subexpression elimination)

* Function calls (e.g. for machine-specific assembly)
13

Tuesday, 24 July 2012



More examples: avoiding pipeline stalls NICTA
/* Check endpoint is not in send state. */ 1dr r0, [r4]
endpoint = *endpointPtr; and r3, r0, #3
if ((endpoint & 0x3) == 0x1) goto slowpath; cmp r3, #1

beq slowpath
/* Check that the caller cap is valid. */ ldr r3, [ip, #-208]
callerCap = *callerCapPtr; cmp r3, #0
1f (callerCap == 0) goto slowpath; beq slowpath

© NICTA 2012 14

Tuesday, 24 July 2012



I_—
More examples: avoiding pipeline stalls NICTA
stall x 2

/* Check endpoint is not in send state. */ 1dr r0, [r4]
endpoint = *endpointPtr; and r3, r0, #3
if ((endpoint & 0x3) == 0x1l) goto slowpath; cmp r3, #1

beq slowpath
/* Check that the caller cap is valid. */ ldr r3, [ip, #-208]
callerCap = *callerCapPtr; cmp r3, #0
1f (callerCap == 0) goto slowpath; beq slowpath

stall x 2

© NICTA 2012 14

Tuesday, 24 July 2012



More examples - avoiding pipeline stalls

endpoint = *endpointPtr;
callerCap = *callerCapPtr;

/* Check endpoint is not in send state. */
1f ((endpoint & 0x3) == 0xl) goto slowpath;

/* Check that
1f (callerCap

© NICTA 2012

Tuesday, 24 July 2012

the caller cap is valid.

0) goto slowpath;

ldr
ldr
and
cmp
beq
cmp
beq

NICTA

r0, [r4d]

r3, [ip, #-208]
r5, r0, #3

r5, #1

slowpath

r3, #0

slowpath

15



_________________i::E2;;;;;;;iiiiiiffffiiiiiiE—-
e ——

N

———

Oe

More examples - avoiding pipeline stalls NICTA
stall x 1
endpoint = *endpointPtr; ldr r0, [r4]
callerCap = *callerCapPtr; 1dr r3, [ip, #-208]
and r5, r0, #3

/* Check endpoint is not in send state. */ cmp r5, #1

1f ((endpoint & 0x3) == 0xl) goto slowpath; beq slowpath

/* Check that the caller cap is valid. */ cmp r3, #0

1f (callerCap == 0) goto slowpath; beq slowpath

© NICTA 2012 15

Tuesday, 24 July 2012



Was it worth 1t? NICTA

Time for one-way IPC via fastpath

Original

_ 200
C-optimised hea

200

Asm-optimised ba0

] gcc4.6.1
OKL4 (assembly) [ armcc 5.01
Theoretical limit
0 80 160 240 320

© NICTA 2012 cycles 16

Tuesday, 24 July 2012



Was it worth 1t?

* Optimisation effort comparable, if not easier

* Performance is compiler dependent
— Optimisations can be used by all compilers

* Correctness is obscured
— Still better than assembly

» Source is less maintainable?
— comments are good!

Tuesday, 24 July 2012

NICTA

17



Some limitations apply* NICTA

* Our claims hold for:

» RISC instruction sets

» Single-issue pipeline

» Register-rich architecture

» Heavily control-oriented code

Room for more optimisation:

e repurpose sacred registers
e discarding stack completely

18

Tuesday, 24 July 2012



| essons learnt NICTA

 Modern compilers are awesome!
¥ Verification and performance are not necessarily at odds

* Applying assembly optimisation techniques to C sources can
achieve near-optimal results®

bernard.blackham@nicta.com.au

Tuesday, 24 July 2012



