
Formalising the L4 microkernel API

Rafal Kolanski Gerwin Klein

National ICT Australia Ltd. (NICTA)
Locked Bag 6016

The University of New South Wales
Sydney NSW 1466

Australia
Email: {rafal.kolanski|gerwin.klein}@nicta.com.au

Abstract

This paper gives an overview of a pilot project on
the specification and verification of the L4 high-
performance microkernel. Of the three aspects ex-
amined in the project, we describe one in more de-
tail: the formalisation of the kernel’s Application Pro-
gramming Interface using the B Method. We con-
clude that machine-supported formal verification of
software is at a turning point; that it is now feasible,
and desirable, to formally verify production-quality
operating systems.

Keywords: B Method, Operating System Specifica-
tion, Software Verification

1 Introduction

The operating system (OS) kernel is defined to be the
part of the OS that runs in the privileged mode of the
hardware and thus is able to bypass hardware protec-
tion mechanisms. A microkernel is a kernel designed
to be minimal in code size and concepts.

L4 is a second generation microkernel [14]. It pro-
vides the traditional advantages of the microkernel
approach to system structure, namely improved re-
liability and flexibility, while overcoming the perfor-
mance limitations of the previous generation of mi-
crokernels. With implementation sizes in the order of
10,000 lines of C++ and assembler code it is an order
of magnitude smaller than Mach and two orders of
magnitude smaller than Linux.

The correctness and reliability of any nontrivial
system clearly critically depends on the operating sys-
tem and its kernel. In terms of security, the OS is part
of the trusted computing base, that is, the hardware
and software necessary for the enforcement of a sys-
tem’s security policy. It has been repeatedly demon-
strated that current operating systems fail at correct-
ness, reliability, and security. Microkernels address
the problem by applying the principles of minimal-
ity and least privilege to OS architecture. To gain
confidence in the overall system, it is therefore highly
desirable to formally verify the correctness of this de-
sign and its implementation.

The L4 kernel is of a size which makes formali-
sation and verification feasible. Compared to other
OS kernels, L4 is very small; compared to the size of
other verification efforts, 10,000 lines of code is still
considered a very large and complex system. Our
methodology for solving this verification problem is
shown in figure 1. It is a classic refinement strategy.
We start out from an abstract model of the kernel
that is phrased in terms of user concepts as they are
explained in the L4 reference manual [13]. This is the
level at which most of the safety and security the-
orems will be shown. We then formally refine this
abstract model in multiple property preserving steps

Figure 1: Overview

towards the implementation of L4. The last step con-
sists of verifying that the C++ and assembler source
code of the kernel correctly implements the most con-
crete refinement level. At the end of this process,
we will have shown that the kernel source code satis-
fies the safety and security properties we have proved
about the abstract model.

We conducted a pilot project to judge the feasibil-
ity of this verification task. The project investigated
three main aspects: a formalisation of the kernel’s
Application Programming Interface (API) using the
B Method (the first horizontal formalisation layer in
figure 1), a full refinement proof for a non-trivial sub-
system of the kernel using Isabelle/HOL (the vertical
slice in figure 1), and a literature survey on formalis-
ing safety and security properties on the design level
(the right-hand side of figure 1).

In this paper we give an overview of the first of
these aspects: the API formalisation using the B
Method, depicted as abstract model in figure 1. The
L4 API provides three basic abstractions: threads,
synchronous inter process communication (IPC), and
virtual memory management (VMM). Our formal-
isation covers threads and IPC in detail and con-
tains the basic structure for VMM. The latter has
been formalised in depth in the vertical slice part of
the project and is already described in earlier pub-
lications [20, 10]. Our formalisation is based on re-
lease version 0.3 of the L4Ka::Pistachio implementa-
tion [12].

We chose the B Method [1], because there existed
a significant amount of experience with this approach
among our student population and we wanted to com-
pare at least two different formalisms before embark-
ing on the full verification task. The B Method is
a formal development methodology based on set the-
ory with first-order logic. It allows progress from an
initial high-level specification all the way to imple-
mentation via formal refinement. In this part of the
project we have not done any formal refinement, but
used the B Method and tool for formalisation only.
The B Toolkit [2] allows for animation of the top-level

specification which makes validating the specification
more convenient. In this mode, the user becomes the
implementation of all non-deterministic or undefined
aspects.

After reviewing related work in section 2 and in-
troducing B concepts and notation in section 3, we
describe our formalisation of the L4 API in section
4. Section 5 gives pointers to further work and con-
cludes.

2 Related Work

Earlier work on operating system kernel formalisation
and verification includes PSOS [15] and UCLA Secure
Unix [22]. The focus of this work was on capability-
based security kernels, allowing security policies such
as multi-level security to be enforced. These efforts
were hampered by the lack of mechanisation and ap-
propriate tools available at the time and so while the
designs were formalised, the full verification proofs
were not practical. Later work, such as KIT [3],
describes verification of properties such as process
isolation to source or object level but with kernels
providing far simpler and less general abstractions
than modern microkernels. There exists some work
in the literature on the modelling of microkernels at
the abstract level with varying degrees of complete-
ness. Bevier and Smith [4] specify legal Mach states
and describe Mach system calls using temporal logic.
Shapiro and Weber [18] give an operational seman-
tics for EROS and prove a confinement security pol-
icy. A number of case studies [6, 5, 21] in the lit-
erature describe the IPC and scheduling subsystems
of microkernels in PROMELA and verify the formal
descriptions with the SPIN model checker. These ab-
stractions were not necessarily sound, having been
manually constructed from the implementations, and
so while useful for discovering concurrency bugs do
not provide guarantees of correctness.

The VFiasco project, working with the Fiasco im-
plementation of L4, has published exploratory work
on the issues involved in C++ verification at the
source level [9]. The VeriSoft project [8] is attempting
to verify a whole system stack, including hardware,
compiler, applications, and a simplified microkernel
called VAMOS that is inspired by, but not very close
to L4. While the simplifications are appropriate for
the goals of VeriSoft, it is doubtful that the VAMOS
kernel will show the necessary performance to be rel-
evant for industrial use.

Spivey uses Z, a predecessor formalism of B, to
specify a simple kernel for a safety-critical X-ray diag-
nostic machine [19]. In abstracting the kernel from its
implementation and documenting it for future reim-
plementations (possibly on different architectures), he
finds a flaw in the system that could potentially have
caused the X-ray machine to inflict damage.

The more academic approach of using formal de-
sign and specfication in the kernel development pro-
cess up front and then proceeding with the imple-
mentation is utilised to good effect by Fowler and
Wellings [7] for an Ada95 runtime support system in
a hard real-time environment. From the verification
perspective, this approach is more efficient than the
post-hoc formalisation that is commonly found and
which we are presenting here. The drawback is that
while this process ensures a correct kernel, it is hard
to get the runtime performance that separates prac-
tical microkernels from impractical ones.

In fact, we propose to do post-hoc formalisation
of the existing L4 microkernel whose architecture has
proven to deliver the required performance, but for
the verification task itself we reserve the freedom to

change details in the code base that make the verifi-
cation process easier.

3 Notation

At the top specification level, the B Method uses ma-
chines, which represent finite state automata. Refine-
ments further refine these, and implementations are
the most concrete in the chain. Since our formalisa-
tion is entirely contained at the top level, we will only
describe machine notation. A machine consists of the
following sections:
DEFINITIONS They are purely syntactic transla-

tions. Any single-letter token counts as a so-
called joker and can represent any set of tokens,
similar to #define in C and C++. One defi-
nition cannot use another one within the same
machine.

VARIABLES A comma separated list of variables.

SETS Enumerations and abstract sets.

CONSTANTS Declares constant sets, members of
sets, or functions (which are also represented as
sets).

PROPERTIES Restrictions on sets and constants.

INVARIANT The invariants of the machine, used
to define variable types, properties, and relation-
ships.

INITIALISATION Initial values for variables.

OPERATIONS The state transitions of the ma-
chine. At the abstract machine level, only par-
allel composition is allowed, i.e. all statements
in the operation (including invoking other oper-
ations) occur at the same time; the operation
itself is instantaneous. An operation may only
invoke operations in other machines, and only
when permitted by inter-machine relationships.
Operations can have preconditions.

The relationship between machines is restricted.
A machine may INCLUDE (read-access to everything
plus invoking operations), or SEE (read-access only
to sets and constants) other machines. Write-access
is only permitted through operations. If machine X
includes Y, it can select which of B’s operations are
visible when another machine includes X with PRO-
MOTES.

Since there is only one name space in B, we use
naming conventions to avoid collisions. We use pre-
fixes for all enumerations and a ‘d’ prefix for most
definitions, as well as long classifying names such as
thread ipc waiting timeout.

Robinson provides provides a good reference to B
syntax [17]. We define a few core notational concepts
here and explain other non-standard notation as it
occurs.

B supplies built-in sets such as the natural num-
bers, NAT and NAT1 (N − {0}). The library also
provides machines defining sets such as INTEGER
and BOOL = {FALSE, TRUE}.

Two frequently used operations are the relational
image and domain restriction. The relational image
of set S under relation r is defined as:
r [S] = { y | ∃x · x ∈ S ∧ x 7→ y ∈ r }

If r is a function, this means all y such that r(x) =
y. The pair (x, y) is denoted x 7→ y.

For a relation r and set S, the domain restriction
operator (B) is defined as follows:
r B S = {x 7→ y | x 7→ y ∈ r ∧ y ∈ S }

The predefined functions dom and ran return the
domain and range of relations and functions; card is
the the cardinality of a set.

2

4 The Formalisation

This section describes the formalisation of the L4 mi-
crokernel API. As far as possible, we will introduce
the kernel concepts together with their formal coun-
terparts. The goals of the formalisation were the fol-
lowing.

Learning Animation of the model to improve and
accelerate understanding of L4 internals for new
users and developer.

Documentation L4 is continually developed and
improved for efficiency. Boiling down the sys-
tem to its essentials in the form of an abstract
model will help to document and clarify the ini-
tial intentions and underlying basic mechanisms.

Experimentation The current version of the L4
API lacks an efficient communication restriction
for information flow and also is vulnerable to
denial of service attacks on kernel memory re-
sources. One of the follow-up projects to this
formalisation is revising the L4 API to fix these
shortcomings. It is one of the goals of the formal-
isation presented here to serve as an experiment
in kernel modelling to find out which methods
work well.

The API is the boundary between user space and
kernel space. When building a model, the question is
Whose viewpoint do we model?

From the perspective of a thread running in the
system, kernel operations are system calls. They re-
turn values and they return them immediatly.

From the kernel’s perspective, however, internal
state changes are visible. For instance, the kernel
might pick out the parameters from the thread’s reg-
isters and memory, then pass them to an internal op-
eration which implements the required functionality.
The operation does not have to return immediately.
The kernel can freeze the thread, change its state, put
it on a waiting queue and so forth. The system call
also does not simply return a value internally, but in-
stead copies return values into the thread’s registers
and memory.

To document the kernel behaviour in detail, we
chose the second viewpoint. It allows, for example,
modelling of thread state transitions in a natural way.
Taking the inside view does not mean that we are
exposing implementation details of the API — the
formalisation remains at the conceptual level of a ref-
erence manual. The API for instance already implies
that the kernel manages thread control states and the
formalisation describes how these states are affected
by operations. The formalisation does not describe
which data structures are used to implement thread
states in the kernel.

Figure 2 shows the module structure of the for-
malisation. Microkernels strive for the minimal set of
functionality that is sufficient to build an OS. This
means that the L4 kernel is effectively a single mod-
ule in which everything is intertwined. We were able
to separate out B modules for each of the major sub-
systems (address spaces, threads, IPC), but as figure
2 shows, they still depend on each other.

In the formalisation, we have placed all types and
constants in separate context machines. There is one
such context machine for each machine containing op-
erations. In this presentation, we summarise these
under the label ContextMachines and describe them
in section 4.1. The rest of the presentation follows
figure 2 bottom up. In section 4.2 we describe the
address space stub (this subsystem has already been
formalised separately), in section 4.3 the concept of

Context MachinesWeakSysCall

IpcBase

IpcCore

Thread

AddressSpace

API

Figure 2: Inclusion diagram for the B development.

threads and in section 4.4 the inter process commu-
nication subsystem. We leave out the description of
WeakSysCall which collects these together into the L4
API functions, but does not contain any precondition
checking yet. Section 4.5 describes the final inter-
face available to the user. Due to space constraints,
our description does not cover all of the formalisation
at the same level of detail. The full formalisation is
available elsewhere [11].

4.1 Context Machines

This section defines the basic types and constants
used in the rest of the formalisation.

In addition to type information, all systems man-
age a finite set of resources. By defining abstract sets
of things (such as thread numbers) and restricting
their cardinality, we implicitly define an upper limit
on the number of such things in the system.

In L4, a structure called the Kernel Information
Page (KIP) contains all the constant values in the
system (how many interrupts, first id of a user thread,
etc.) The context machines serve a similar purpose.

We start off with the three main limiting aspects
of the kernel: the number of threads in the sys-
tem (kMaxThreads), the number of address spaces in
the system (kMaxAddressSpaces), and the number of
threads in an address space (kMaxThreadsPerSpace).
These three constants have the following properties:

PROPERTIES

kMaxThreads ∈ N1 ∧
3 ≤ kMaxThreads ∧
kMaxThreadsPerSpace ∈ N1 ∧
kMaxAddressSpaces ∈ N1 ∧
3 ≤ kMaxAddressSpaces

Each thread must have an address space; an ad-
dress space can only be created by also creating a
thread [13, section 2.4]. There are three address
spaces initially in the system: the sigma0 space, the
root server space and the kernel space. The minimum
number of address spaces is therefore 3, and the same
goes for threads. Hence, the maxima must be at least
3, too.

In order to talk about address spaces within the
model, we define the abstract set of all possible ad-
dress spaces and restrict them to the maximum num-
ber of address spaces in the system:

SETS

ADDRESS SPACE

PROPERTIES

card (ADDRESS SPACE) =

kMaxAddressSpaces ∧

3

Figure 3: A simplified diagram of possible thread
state transitions.

kRootServerSpace ∈ ADDRESS SPACE ∧
kSigma0Space ∈ ADDRESS SPACE ∧
kKernelSpace ∈ ADDRESS SPACE ∧
kRootServerSpace 6= kSigma0Space ∧
kSigma0Space 6= kKernelSpace ∧
kRootServerSpace 6= kKernelSpace

In the above, we define three new constants. Their
function is to reserve three arbitrary members of AD-
DRESS SPACE for the three core address spaces
mentioned before: kSigma0Space, kRootServerSpace,
and kKernelSpace.

These address spaces have special status in L4,
they are privileged:

DEFINITIONS

dIsPrivilegedSpace (s) b=
s ∈ { kSigma0Space , kRootServerSpace ,

kKernelSpace }

The following constants describe the control states
that threads can experience in L4:

tsAborted the thread exists, but has not been ini-
tialised

tsRunning the thread has been initialised and if
scheduled, can run

tsPolling thread is waiting on an IPC send to an-
other thread

tsWaitingTimeout thread is waiting for incoming
IPCs from one or more threads, with a finite
time-out

tsWaitingForever as above, but the time-out is in-
finite

Figure 3 presents an overview of the possible tran-
sitions between these states. We show a complete
diagram below in figure 4, section 4.4.3.

These states differ from the ones in the L4 imple-
mentation in following ways:

• Multiprocessing-related states are missing since
our model is too abstract to demonstrate effects
of multiple-CPU interaction;

• The halted state is missing. According to discus-
sions with the L4 developers, this state is better
modelled by a flag. As defined in [13, section

2.3], halting a thread prevents it from execut-
ing in user mode, while ongoing IPC is not af-
fected. This means that it simply prevents the
thread from being scheduled. Furthermore, the
ExchangeRegisters system call needs to re-
sume halted threads, creating the need for an-
other (saved) thread state. This preserves func-
tionality, but makes for a simpler model;

• The aborted state has a slightly different mean-
ing than in the L4 implementation. In L4, all
kernel thread control blocks are preallocated and
their initial state is aborted. When a thread
gets created inactive, the state remains aborted.
The actual existence of a thread is defined as
the thread having been assigned to an address
space. Deleting a thread involves deleting this
assignment. In our model, the non-existence of
a thread is marked by its absence from the set of
existing threads, so the threads do not have any
actual state. Once the thread is created inactive,
the two viewpoints merge.

We now come to the IPC related constants:
DEFINITIONS

canSend (t) b=
thread state (t) ∈ { tsRunning , tsPolling } ;

canReceive (t) b=
thread state (t) ∈ { tsWaitingTimeout ,

tsWaitingForever }

To send an IPC, a thread must either be running
(it invokes the IPC) or polling (the kernel invokes the
IPC on behalf of the thread). To receive one, it must
be waiting.

The set TCB represents all possible threads creat-
able in the system. We have chosen this name due to
its similarity to the pre allocated Kernel Thread Con-
trol Blocks in the system. The constants kSigma0 and
kRootServer reserve two distinct members of TCB for
sigma0 and the root server threads, respectively.

Additionally, the constant kIntThreads reserves a
subset of TCB for interrupt threads as follows:
kIntThreads ⊂ TCB ∧
kIntThreads 6= {} ∧
card (kIntThreads) ≤ kMaxThreadsPerSpace ∧
kSigma0 6∈ kIntThreads ∧
kRootServer 6∈ kIntThreads

The constant kIntThreads is a proper subset of
TCB, of which kRootServer and kSigma0 are not
members. Since interrupt threads go in the kernel
address space, there must not be more than kMax-
ThreadsPerSpace of them. There must be at least
one interrupt thread in the system.

The set EXREGS FLAGS defines the various op-
tions that can be passed into the ExchangeRegis-
ters system call [13, section 2.3]: ex h represents h,
ex R represents R and so on for all the flags: hpu-
fisSRH. We explain the meaning of these flags below
when we introduce the corresponding operations.

Now that the thread context is defined, we can
model thread identifiers, the user’s view of threads.
We are leaving out local thread identifiers and thread
versions, as they both are mainly a performance opti-
misation and do not extend the behaviour of the ker-
nel. They can be added as a separate concept during
refinement later. Thus, the set GLOBAL TNO rep-
resents all possible global thread identifiers. The con-
stants kAnyGNo and kNilGNo represent anythread
and nilthread respectively. There must be enough
thread numbers for all threads plus two for the
aforementioned constants, making the set cardinality
kMaxThreads + 2. We omit the obvious definition
in B.

4

The last set of constants concerns time-outs. Since
the actual values of time-outs are irrelevant at this
level of abstraction, we only define three predicates:

isNoTimeout requests an action be taken (or it will
fail) immediately

isFiniteTimeout means that the thread will wait or
poll for some time until timed out by the kernel,
or cancelled by another thread

isInfiniteTimeout indicates that unless the opera-
tion is cancelled, the wait will go on indefinitely

We leave out the enumeration of error messages.
It suffices to know that there is a set ERROR listing
all of them. Also, dIpcFailures lists the failures dur-
ing IPC that are beyond the deterministic control of
the abstract model. If IPC fails non-deterministically,
one of these will occur.

4.2 Address Spaces

Once the context is set up, the first important aspect
of L4, on which all other aspects are based, is address
spaces. Since this model does not go into the details
of memory management, it suffices to model which
spaces are used by the system and which of those
have been initialised. The model mainly consists
of three operations CreateAddressSpace, InitialiseAd-
dressSpace, and DeleteAddressSpace, which we de-
scribe below.

The AddressSpaces machine SEES the context
machines described above, importing their abstract
sets and constants and introduces two new variables:

spaces representing the address spaces that have
been created, and

initialised spaces representing the address spaces
that are created and initialised

Their relationship is defined as follows:

INVARIANT

spaces ⊆ ADDRESS SPACE ∧
initialised spaces ⊆ spaces

There cannot be more address spaces created in
the system than the system can hold, nor can more be
initialised than have been created. Being initialised
implies being created.

Every variable in B must be initialised in a man-
ner that establishes the invariant. In the con-
text machines three address spaces were reserved:
kSigma0Space, kRootServerSpace, and kKernelSpace.
These are the spaces created and initialised by the
root task on start up:

INITIALISATION

spaces := { kSigma0Space,

kRootServerSpace, kKernelSpace } ‖
initialised spaces := { kSigma0Space,

kRootServerSpace, kKernelSpace }

The operator ‖ denotes parallel composition.
Next, we define the three operations that modify

the state (variables) of this machine in the OPERA-
TIONS clause. Since the operations are designed in
such a way that satisfying their preconditions guar-
antees success, they do not return any values for error
reporting.

The three operations are creating an address
space, initialising it, and deleting it. Once an address
space is initialised it cannot be uninitialised.

CreateAddressSpace (space) b=
PRE space ∈ ADDRESS SPACE − spaces

THEN

spaces := spaces ∪ { space }
END

To guarantee the success of this operation, the
address space identifier passed in must be one of
those not yet created. This becomes the precondition.
Once the precondition is satisfied, the new identifier
is added to the set of created address spaces. In the
user visible L4 API there do no exist any real address
space identifiers. Address spaces are referred to im-
plicitly by the ID of any thread running in the address
space. More than one thread ID can refer to the same
address space. Internally, address spaces are identi-
fied by just pointers to address space structures which
is what the space identifiers in this formalisation cor-
respond to.

Initialisation is easy as well. If the space identifier
is one of those already created, the operation succeeds
and adds the identifier to the set of initialised address
spaces:

InitialiseAddressSpace (space) b=
PRE space ∈ spaces THEN

initialised spaces := initialised spaces ∪ { space }
END

The final operation is deletion of an address
space. To satisfy the invariant, it suffices that any
member of ADDRESS SPACE be passed in. For
the operation to make sense, however, invoking it
should only have meaning for an existing address
space. Additionally, L4 does not allow deletion of
privileged threads [12, SYS THREAD CONTROL in
thread.cc], which means it does also not allow deletion
of priviledged address spaces.

DeleteAddressSpace (space) b=
PRE space ∈ spaces ∧

¬ (dIsPrivilegedSpace (space))

THEN

spaces := spaces − { space } ‖
initialised spaces :=

initialised spaces − { space }
END

As address space identifiers are not visible on the
user level, address spaces are deleted implicityly when
the last thread running in an address space is deleted.
That means DeleteAddressSpace (as the other opera-
tions in this machine) are not visible at the API top
level, but rather provide functionality for the rest of
the formalisation.

4.3 Threads

Thread functionality is divided into three machines:

Thread contains all aspects of threads not directly
related to IPC (such as state, pagers, schedulers,
etc.)

IpcCore contains the place holder for an operation
copying one thread’s virtual registers onto an-
other

IpcBase contains IPC-related aspects of threads,
such as which thread is waiting on another.

This section describes the Thread machine. Due
to the kernel being extremely intertwined, the lay-
ered approach imposed by B caused a more complex
structure than what would be expected from a greatly
simplified specification.

5

We abstract away from the concept of processors
and a currently running thread. One can look at it as
a magical machine on which each thread has its own
processor to execute on. That means, from a thread’s
perspective, suspension from execution is essentially
transparent in our model.

The machine INCLUDES all the functionality
in AddressSpace, and PROMOTES the InitialiseAd-
dressSpace operation so that higher-level machines
can call it whenever an address space needs to be
created.

4.3.1 Variables

In the invariant, we proceed to define the meaning of
the machine and its variables. We begin with threads
and their subsets:

threads ⊆ TCB ∧
halted threads ⊆ threads ∧
active threads ⊆ threads ∧
kSigma0 ∈ active threads ∧
kRootServer ∈ active threads ∧
kIntThreads ⊆ active threads

Where threads are the threads that have been cre-
ated, active threads are those that have been acti-
vated. The privileged threads are implicitly initialised
when the kernel starts and cannot be uninitialised.
Halted threads may not enter user mode. Interrupt
threads have been assigned different halting semantics
by the L4 kernel designers. See thread state below.

All threads in L4 are uniquely identified by their
thread numbers, with two arbitrarily reserved to rep-
resent any thread and no thread respectively:

thread gno ∈ threads � GLOBAL TNO ∧
kAnyGNo 6∈ ran (thread gno) ∧
kNilGNo 6∈ ran (thread gno)

We define a total injective function mapping threads
to thread numbers, but excluding reserved numbers
from its range. Note that in B, instead of a type
declaration, we say that a function is a member of
the set of all functions meeting given constraints.

Next we define the relationship between the exist-
ing threads and address spaces:

thread space ∈ threads →→ spaces ∧
thread space (kSigma0) = kSigma0Space ∧
thread space (kRootServer) = kRootServerSpace ∧
thread space [active threads] ⊆ initialised spaces ∧
thread space [kIntThreads] = { kKernelSpace } ∧
thread space −1 [{ kKernelSpace }] = kIntThreads

In L4, a created thread must have an address
space. In fact, the address space pointer in the TCB
is what defines whether a thread exists or not. Fur-
thermore, there are no explicit address space identi-
fiers; one specifies a thread in the address space in-
stead. Hence, address space cannot be empty and
thread space is total as well as surjective (denoted
→→). For a thread to be active it must reside in an
initialised address space.

Interrupt threads are only an abstraction of the
underlying hardware interrupts, and cannot actually
run or have an implementation. The kernel space is
therefore allocated to them.

Each thread has two other threads associated with
it. These are the thread’s scheduler and pager. The
former is permitted to change the thread’s scheduling-
related properties, while the latter is invoked if the
thread causes a page fault.

Let us look at the scheduler first:

thread scheduler ∈ threads − kIntThreads → TCB ∧
thread scheduler (kSigma0) = kRootServer ∧
thread scheduler (kRootServer) = kRootServer

Interrupt threads, naturally, cannot be scheduled.
Since L4 does not keep track of schedulers, the range
of thread scheduler is not the set of existing threads,
but can in fact be any TCB. The root server is tra-
ditionally the scheduler for sigma0 and itself. We be-
lieve that this situation should be maintained at all
times, since otherwise the privileged threads could
lose control of the system. The L4 source code does
not, at this time, contain checks for this.

In L4, the process of page faults is resolved via
IPC, i.e. a faulting thread needs a target to ‘send’ to
(it is the kernel, however, which really performs the
action on the thread’s behalf). This target is known
as the thread’s pager :
thread pager ∈ threads 7→ TCB ∧
kSigma0 6∈ dom (thread pager) ∧
∀ kk . (kk ∈ kIntThreads ∧ kk 6∈ halted threads ⇒

thread pager (kk) = kk) ∧
∀ kk . (kk ∈ kIntThreads ∧ kk ∈ halted threads ⇒

thread pager (kk) 6= kk)

The function is partial (7→) since sigma0, being
the initial system pager, does not have another pager
to fall back on. Additionally, until the thread is ac-
tivated, the pager field in its TCB is meaningless
(in fact, setting a valid pager constitutes activation).
Similar to thread scheduler the range of thread pager
cannot be enforced, since the thread’s pager may have
been deleted and is not necessarily valid. Interrupts
are enabled by setting the corresponding interrupt
thread’s halted flag and setting its pager to something
other than itself. When disabled, the thread’s pager
must be the thread itself.

All threads in the system must be in one of the
known states:
thread state ∈ threads → THREAD STATE ∧
active threads ∩ thread state −1 [{ tsAborted }] ⊆

kIntThreads ∧
tsRunning 6∈ thread state [kIntThreads] ∧

The aborted state and a thread being active are
mutually exclusive, with the exception of interrupt
threads, which do not achieve a running state under
any circumstances. Since they participate in IPC,
they can assume waiting and polling states, but once
IPC is resolved they return to aborted. A proba-
ble reason for this is efficiency: since the scheduler
only looks for running threads to execute, it will au-
tomatically overlook interrupt threads, at the price
of making the interrupts-as-threads abstraction less
complete. See figure 3 for a diagram of possible state
transitions.

Finally, to make the specification simpler to read,
we have a variable threads in space keeping a separate
count of how many threads are in each address space.
Its range is 0 . . . kMaxThreadsPerSpace.

4.3.2 Initialisation

We begin initialisation by creating sigma0, the root
server and the interrupt threads. They are created
active:
threads := { kSigma0 , kRootServer } ∪ kIntThreads ‖
active threads := { kSigma0 , kRootServer }

∪ kIntThreads

They will be in the address spaces kSigma0Space,
kRootServerSpace and kKernelSpace respectively:
thread space := { kSigma0 7→ kSigma0Space ,

kRootServer 7→ kRootServerSpace }
∪ kIntThreads × { kKernelSpace }

6

Note that the Cartesian product of kIntThreads
and the singleton set {kKernelSpace} is a function
mapping all the interrupt threads to that space.

L4 initialises interrupt threads on first activation
transparently to the user, therefore it is not possible
to tell whether an inactive interrupt thread has been
initialised. In light of this, all interrupt threads in our
model start as existing, but disabled:

halted threads := {}

Since interrupt threads start out disabled, they are
their own pagers. Additionally, sigma0 is the root
server’s pager:

thread pager := { kRootServer 7→ kSigma0 } ∪
id (kIntThreads)

where id is the identity relation.
The root server starts up as the scheduler for

sigma0 and for itself [12, thread.cc]:

thread scheduler := { kSigma0 7→ kRootServer ,

kRootServer 7→ kRootServer }

The root server and sigma0 start with a running
state, while interrupt threads start out as aborted :

thread state := { kSigma0 7→ tsRunning ,

kRootServer 7→ tsRunning } ∪
kIntThreads × { tsAborted }

Finally, we set the thread counters in the respec-
tive address spaces:

threads in space := { kSigma0Space 7→ 1 ,

kRootServerSpace 7→ 1 ,

kKernelSpace 7→ card (kIntThreads) }

4.3.3 Operations

As the Thread machine contains the core function-
ality in the formalisation, we will describe its opera-
tions in some detail. The machine corresponds to the
ThreadControl subsystem of L4. The key opera-
tions at this level are CreateThread, ActivateThread,
and DeleteThread.

To create a thread we need a free TCB, a thread
number, an address space and a scheduler:

CreateThread (tcb, global tno, space, scheduler)

CreateThread creates inactive threads. In order to
succeed, the thread must not already exist, the sup-
plied thread number must not be reserved or used for
any existing thread. The address space the thread is
to be created in, does not need to exist, but it cannot
be the kernel space (which is reserved for interrupts):

PRE

tcb ∈ TCB − threads

global tno ∈ GLOBAL TNO ∧
global tno 6∈ ran (thread gno) ∧
global tno 6= kNilGNo ∧
global tno 6= kAnyGNo ∧ space ∈ ADDRESS SPACE ∧
space 6= kKernelSpace

Additionally, when no address space is supplied
during thread creation, L4 creates a new address
space for the new thread. At the level of the thread
machine, we model this with the CreateAddressSpace
operation if the space passed in does not exist. If it
does exist, the total number of threads in it must not
exceed the limit once this thread is added:

space ∈ spaces ⇒
threads in space (space) < kMaxThreadsPerSpace

Since an inactive thread is being created, no re-
striction is placed on scheduler. If these conditions
are satisfied, the operation is guaranteed to succeed.
In order to actually create the thread, we either cre-
ate a new address space with the thread in it, or add
one to the address space, and simultaneously set all
properties for the new thread:

IF space 6∈ spaces THEN

CreateAddressSpace (space) ‖
threads in space (space) := 1

ELSE

threads in space (space) := threads in space (space) + 1

END ‖
threads := threads ∪ { tcb } ‖
thread gno (tcb) := global tno ‖
thread space (tcb) := space ‖
thread scheduler (tcb) := scheduler

In the description of following operations, trivial
typing preconditions (such as tcb ∈ TCB) will be
omitted. This is an area where we would have found
a type system like in Isabelle/HOL useful.

In order for a thread to be able to do anything
in the system, it must first be activated. This can
be done as part of creation, or as an ActivateThread
operation on an inactive thread:

ActivateThread(tcb, space, pager, scheduler)

In order for the operation to succeed exactly when
activation in L4 succeeds, tcb must be an existing but
inactive thread and pager must exist and be running
when the thread starts executing [13, section 2.4]:

PRE

pager ∈ threads ∧
scheduler ∈ active threads

L4 allows to migrate threads into new address
spaces on activation. If this occurs, we must make
sure that the thread fits into the new space:

space ∈ initialised spaces ∧
(space 6= thread space (tcb) ⇒

threads in space (space) < kMaxThreadsPerSpace)

The operation itself updates the pager and the
scheduler, adds tcb to active threads, sets its state
to tsWaitingForever, and migrates the thread if nec-
essary. In L4, a thread will begin waiting for an
IPC from its pager straight after activation. This
is why its state begins as waiting forever. The IPC
component will be initialised in the operation Acti-
vateThread2 in section 4.4.3 below. The migration is
performed as follows:

IF space 6= thread space (tcb) THEN

thread space (tcb) := space ‖
threads in space := threads in space <+

{ space 7→ threads in space (space) + 1 ,

thread space (tcb) 7→
threads in space (thread space (tcb)) − 1 }

END

The thread counters for the two address spaces
(current and target) are updated using right overrid-
ing (denoted <+). Its definition is:

r1 <+ r2 = r2 ∪ (dom(r2) −C r1)

The definition uses another of B’s operators, do-
main subtraction (−C), defined as:

S −C r = {x 7→ y | x 7→ y ∈ r ∧ x /∈ S }

7

We define CreateActiveThread as a merger of Cre-
ateThread and ActivateThread. The only difference is
that migrating the thread is not possible as it does not
exist yet. Note that a higher-level operation cannot
combine the those two operations due to B’s restric-
tions.

The operation DeleteThread, given an existing
thread tcb, removes it from the set of known, active
and halted threads provided the tcb is not in one of
the privileged address spaces. We also remove it from
all thread-related functions in the machine:

DeleteThread(tcb)

thread space := { tcb } −C thread space ‖
thread state := { tcb } −C thread state ‖
thread pager := { tcb } −C thread pager ‖
thread scheduler := { tcb } −C thread scheduler ‖
thread gno := { tcb } −C thread gno

Furthermore, if the thread is the only one left in
the address space, we delete the address space, oth-
erwise we decrement the thread counter.

IF tcb = thread space −1 [{ thread space (tcb) }]

THEN

DeleteAddressSpace (thread space (tcb)) ‖
threads in space :=

{ thread space (tcb) } −C threads in space

ELSE

threads in space (thread space (tcb)) :=

threads in space (thread space (tcb)) − 1

END

Apart from creating, deleting and activating, the
ThreadControl API section in L4 contains a num-
ber of further operations on threads which we explain
below.

Modifying the thread’s scheduler is one of them.
The SetScheduler operation is trivial, assuming only
that the thread and the scheduler exist, and updating
the thread’s scheduler. We omit its definition in B
here.

We also omit the Migrate operation. It performs
the same task as the migration in ActivateThread.

As our description of the formalisation progresses
it becomes obvious that there is much statements du-
plication. Indeed, the next operation in the machine
is MigrateAndSetScheduler which demonstrates the
problem again. As mentioned before, this is a restric-
tion of the B system. Writing Migrate and SetSched-
uler does not mean a higher-level machine can com-
bine them to get MigrateAndSetScheduler. If they
are to be combined, statements must be duplicated.
We believe this to be a shortcoming of the B Method
as used by the B Toolkit [2]. One solution to this
is to defer any specific actions to refined machines,
then use sequential composition in the refinements.
The problem with this is that the resulting top-level
machines cannot be meaningfully animated, making
validation of the formal model more difficult.

We next define the SetState operation, taking tcb
and state, with the restrictions that tcb is active, not
an interrupt thread (since they have different state
semantics) and state cannot be tsAborted (transition
to an aborted state would imply thread deactivation,
which L4 does not provide):

SetState (tcb, state) b=
PRE state ∈ THREAD STATE ∧

state 6= tsAborted ∧
tcb ∈ active threads ∧
tcb 6∈ kIntThreads

THEN

thread state (tcb) := state

END

To implement the ExchangeRegisters [13, sec-
tion 2.3] system call, we need to specify its semantics
with respect to the variables in the Thread machine.
Its parameters are as follows:

tcb the thread to act on

control a subset of EXREGS FLAGS, representing
the set of actions the operation is to take (see
section 4.1)

pager the pager to set the thread’s pager to, if indi-
cated by control

unwait should the target thread be woken; this is to
correctly set the thread state if a machine includ-
ing this one, such as IpcBase, uses its equivalent
of ExchangeRegisters to cancel waiting or polling
IPC states (see section 4.4.3).

Since there is also no specification of user-level reg-
isters saved in the kernel, IP, SP and FLAGS are not
passed in. The semantics of ExchangeRegisters means
a thread can only invoke it on another thread in its
address space. Since no thread can be in the reserved
kernel address space, interrupt threads are excluded.
The operation sets the pager (if ex p ∈ control), halts
the thread (if ex H ∈ control, resumes if not) and
resets any waiting states (unwait = TRUE)
ThreadExchangeRegisters(tcb, control, pager, unwait) b=

PRE tcb ∈ threads ∧ control ⊆ EXREGS FLAGS ∧
pager ∈ TCB ∧ tcb 6∈ kIntThreads ∧ unwait ∈ BOOL

THEN

IF ex p ∈ control THEN

thread pager (tcb) := pager

END ‖
IF ex h ∈ control THEN

IF ex H ∈ control THEN

halted threads := halted threads − { tcb }
ELSE

halted threads := halted threads ∪ { tcb }
END

END ‖
IF unwait = TRUE THEN

IF tcb ∈ active threads THEN

thread state (tcb) := tsRunning

ELSE

thread state (tcb) := tsAborted

END

END

END

There are two special operations for interrupt
threads: ActivateInterrupt and DeactivateInterrupt.
In L4, activating an interrupt thread means setting it
to halted and setting its pager to a value other than
itself:
ActivateInterrupt(tcb, handler) b=

PRE tcb ∈ kIntThreads ∧ handler ∈ TCB ∧
handler 6= tcb

THEN

halted threads := halted threads ∪ { tcb } ‖
thread pager (tcb) := handler

END

To deactivate an interrupt thread, we perform the
opposite: the pager is set to itself and the halted flag is
reset. The definition is analogous to ActivateInterrupt
and we omit it here.

We will now describe helper-operations enabling
IPC-related state transitions. The IPC state transi-
tions themselves are the subject of the next section.
The first operation is Unwait, which reverts a wait-
ing or polling (waiting to send) thread to its normal
state. For normal threads this is running ; for inactive
and interrupt threads it is aborted.

8

UnWait(tcb) b=
PRE tcb ∈ threads THEN

SELECT

tcb ∈ active threads ∧ tcb 6∈ kIntThreads

THEN

thread state (tcb) := tsRunning

WHEN

tcb ∈ active threads ∧ tcb ∈ kIntThreads

THEN

thread state (tcb) := tsAborted

ELSE

thread state (tcb) := tsAborted

END

END

A SELECT statement non-deterministically se-
lects one of the cases whose condition is true and eval-
uates the statement contained in the THEN clause.
If no condition is true, the ELSE clause is evaluated.

When a running thread attempts to send an IPC
to another thread, one of three things happens:

• the other thread is not waiting: the running
thread polls — SetState is used

• the other thread is waiting, no receive phase is
included: the IPC occurs, the remote thread is
woken with UnWait

• as above, but a non-trivial receive phase is in-
cluded: the IPC occurs, the remote thread is
woken, but the current thread starts waiting —
WakeUpAndWait is used

The WakeUpAndWait operation takes a running
thread, a waiting thread and a the wait state the send-
ing thread is to assume. Both threads must be active,
the first must be running (isRunning tests for equality
with tsRunning), the second must be waiting (tsWait-
ingForever or tsWaitingTimeout):
WakeUpAndWait(running tcb, waiting tcb, wait state) b=

PRE running tcb ∈ active threads ∧
waiting tcb ∈ active threads ∧
isWaiting (wait state) ∧
isRunning (thread state (running tcb)) ∧
isWaiting (thread state (waiting tcb))

THEN

IF waiting tcb ∈ kIntThreads THEN

thread state := thread state <+

{ running tcb 7→ wait state ,

waiting tcb 7→ tsAborted }
ELSE

thread state := thread state <+

{ running tcb 7→ wait state ,

waiting tcb 7→ tsRunning }
END

END

Threads are not the only cause of IPC happening.
When an IPC cannot be resolved immediately, the
situation may arise that two threads, one polling on
the second and the second waiting on the first, might
be inside the system. It is then up to the scheduler to
cause the IPC to happen. When it does, both threads
need to be woken up and resume running. This is also
true if the IPC fails. To handle this case, we use the
DualWakeUp operation, which simply takes a polling
and waiting thread and essentially performs an Un-
wait on each. We omit the obvious formal definition.

4.4 Inter Process Communication

This section describes the machines IpcCore and
IpcBase which cover the IPC-related operations in
L4.

Inter process communication is the core compo-
nent of L4. Nearly all aspects of the system are ab-
stracted by IPC when possible, including donation
and leasing of memory to other processes. IPC is
synchronous; for a successful transfer to occur, the
sender must be sending or polling while the receiver
is waiting (or running, if the sender is polling). What
is more, the receiver must be waiting for the sender for
this to work. The special thread identifiers anythread
and anylocalthread also declare who a thread is willing
to receive from. When the sender tries sending an IPC
but the receiver is not ready or currently willing to
receive, it goes into a polling state and is placed in the
receiver’s incoming queue. There is only one polling
state, regardless of the timeout. Polling may include
an additional receive phase, which means that should
the send succeed, the kernel immediately places it into
a waiting state with the receive phase parameters.

At first glance, the IpcCore machine does not seem
very useful, as it has no state and contains only a
single place-holder operation PerformIpc, which does
nothing. This is because the IpcCore operation rep-
resents the transfer of information contained in Mes-
sage Registers (MRs) from the sending to the receiv-
ing thread, but MRs do not exist in the specification.
They could be added in a later refinement step.

We decided to leave out MRs at this level of the
specification, because they contain too much imple-
mentation detail. When an IPC is performed, MRs
do not merely get transferred, but can also contain in-
formation on memory maps and grants which would
have duplicated the efforts of the VM subsystem part
of the verification pilot project.

The machine contains a useful definition canIPC
representing whether a thread can invoke the IPC sys-
tem call (for interrupt threads, this means whether
the kernel can perform the IPC on behalf of the
thread): the thread must be active, running and not
halted (except for interrupt threads, which must be
halted to be enabled):

canIPC (t) b=
t ∈ active threads ∧
(t ∈ kIntThreads ⇒ t ∈ halted threads) ∧
(t 6∈ kIntThreads ⇒ thread state (t) = tsRunning ∧

t 6∈ halted threads)

The IpcBase machine is the basis for all state tran-
sitions during IPC. It INCLUDES IpcCore and so
builds on all machines described so far. It does not
promote any operations. The IPC operations are non-
deterministic, i.e. there are situations which might
cause them to fail which are not explicitly contained
in this specification. This means that the first pos-
sibility of failure is in this machine. The operations
in the previous machines always succeeded given the
preconditions. In L4, the error condition is stored in
the Error Thread Control Register, which means we
have to specify some form of this TCR in the IpcBase
machine.

Unfortunately, B’s inability to perform two oper-
ations from the same machine in parallel means that
the promoted operation cannot clear the Error TCR
themselves. As a work-around we introduce new lo-
cal versions of these operations, which only add that
error functionality and shadow all operations which
might normally just be promoted.

4.4.1 Variables

The IpcBase machine uses information on which
thread is waiting/polling for which other thread to
check when to allow the IPC to occur, and handles
invoking the proper state-transition operations from
the Thread machine.

9

In L4, threads which are in a waiting state must
be waiting for a specific thread number, or anythread.
They cannot wait for nilthread. If a thread wants to
make sure the waiting operation times out, it should
wait for itself [13, section 5.6]:

thread ipc waiting for ∈
active threads 7→ GLOBAL TNO ∧

kNilGNo 6∈ ran (thread ipc waiting for)

Only active threads may participate in IPC, but
they may wait for any thread number. The reference
manual states that if the partner does not exist, the
IPC operation will fail. However, the thread might
exist when IPC is invoked, but be deleted before IPC
completes, so thread ipc waiting for cannot have ac-
tive threads, or even threads as its permitted range.

We not only need to know that a thread is waiting,
but also for how long it is waiting. We therefore define
the thread ipc waiting timeout function. Its range is
identical to the one of thread ipc waiting for, but it
specifies the timeout for waiting threads:

thread ipc waiting timeout ∈
active threads 7→ TIMEOUT ∧

eZeroTimeout 6∈ ran (thread ipc waiting timeout) ∧
dom (thread ipc waiting timeout) =

dom (thread ipc waiting for) ∧
dom (thread ipc waiting timeout) =

thread state −1 [{ tsWaitingTimeout ,

tsWaitingForever }]

All the threads in the domain must either be
waiting with a timeout, or waiting forever. No
thread with a waiting state may be absent, and no
thread in the function’s domain may have a differ-
ent state. Since the domain is the same as that for
thread ipc waiting for, the constraint applies there as
well. Zero-timeout is not permitted, since those calls
are resolved immediately without forcing the thread
to wait.

Similar to the two functions above, we define
polling semantics for threads:

thread ipc polling on ∈ active threads 7→ threads ∧
thread ipc polling timeout ∈

active threads 7→ TIMEOUT ∧
dom (thread ipc polling timeout) =

thread state −1 [{ tsPolling }] ∧
eZeroTimeout 6∈ ran (thread ipc polling timeout) ∧
dom (thread ipc polling on) ⊆

dom (thread ipc polling timeout)

In L4, each thread keeps track of which thread it is
polling on (if any), as well as keeping a list of threads
which are polling on it. The deletion of a thread which
another thread is polling on is not well defined (nei-
ther in manual nor source code). In our formalisation,
we only remove the target thread from the range of
thread ipc polling on and let the IPC time out. For
this reason, there can be some threads in a polling
state which are not actually polling for any thread.
All polling threads must have a timeout, even if the
thread they are polling on was deleted, otherwise they
will never return to running.

The convenience function thread incoming, given
a thread, yields the threads that are polling on
it. It represents each thread’s incoming IPC buffer
and is just the relational inverse of all threads on
thread ipc polling on:

∀ tt . (tt ∈ active threads ⇒ thread incoming (tt) =

thread ipc polling on −1 [{ tt }])

For some operations, we need the thread numbers
(IDs) of incoming threads. Again, to simplify the
formalisation we define thread incoming gnos as:

∀ tt . (tt ∈ active threads ⇒
thread incoming gnos (tt) =

thread gno [thread incoming (tt)])

In addition to the above, when the send phase of
an IPC succeeds, the receive phase is invoked. If no
receive was requested, the thread goes directly back
to running. Otherwise the receive is performed, which
means if no candidates are available, the thread must
wait. We store a timeout for each polling thread.
The thread recv waiting functions only differ from the
thread ipc waiting functions in that not all polling
threads will have a receive phase, and no waiting
thread may have a future receive phase:

dom (thread recv waiting for) ⊆
dom (thread ipc polling timeout) ∧

dom (thread recv waiting timeout) ∩
dom (thread ipc waiting timeout) = {}

The variable thread error represents the concept
of each thread having some error condition which re-
sulted from a previous operation:

thread error ∈ active threads → ERROR

For inactive threads (which cannot execute), the
mapping has no meaning and so does not exist.
Note that thread error is not the same as the Er-
ror TCR [13], since ERROR contains eNoError, a
condition to signify success. L4 would put the suc-
cess/failure result into a register instead.

4.4.2 Initialisation

We now describe, how the variables defined in the
section before are initialised. Initially, no thread is
waiting for any other thread or engaged in IPC in
any way, meaning that all the thread ipc * variables
as well as the thread recv * variables are initialised to
empty sets.

Since the interrupt threads, sigma0 and the root
server exist on start up, we want their incoming sets
to be present, but empty:

thread incoming :∈
{ kSigma0 , kRootServer } ∪ kIntThreads → { {} } ‖

thread incoming gnos :∈
{ kSigma0 , kRootServer } ∪ kIntThreads → { {} }

Any function mapping those threads to the the
empty set (there is only one) will satisfy that require-
ment (:∈ denotes the choice operator).

As for the error condition, all existing threads (the
same ones as above) start out with the eNoError con-
dition:

thread error := { kSigma0 7→ eNoError ,

kRootServer 7→ eNoError } ∪
kIntThreads × { eNoError }

4.4.3 Operations

The new variables introduced in this machine, to-
gether with the invariant of the included machines
produce a new, larger invariant. Promotion of some
operations causes the local invariant to be violated as
the operations in lower machines know nothing about
it. Operations which introduce handling of IpcBase’s
variables to operations from Thread or AddressSpace
have 2 appended to their name.

The first of these is ActivateThread2, which sets
up the local variables when the thread is activated,
and invokes the original ActivateThread. Their pre-
conditions and parameters are the same, except that
we now need to specify who a freshly activated thread
must wait for an IPC from. In L4, that is its pager.
Since it cannot run until the message is received, it
will wait forever:

10

ActivateThread2(tcb, space, pager, scheduler) b=
PRE tcb ∈ threads ∧ tcb 6∈ active threads ∧

tcb 6= pager ∧
thread space (tcb) ∈ initialised spaces ∧
pager ∈ active threads ∧
scheduler ∈ active threads ∧
space ∈ initialised spaces ∧
(space 6= thread space (tcb) ⇒
threads in space (space) < kMaxThreadsPerSpace)

THEN

ActivateThread (tcb , space , pager , scheduler) ‖
thread ipc waiting timeout (tcb) :=

eInfiniteTimeout ‖
thread ipc waiting for (tcb) := thread gno (pager) ‖
thread error (tcb) := eNoError ‖
thread incoming (tcb) :=

thread ipc polling on −1 [{ tcb }] ‖
thread incoming gnos (tcb) :=

thread gno [thread ipc polling on −1 [{ tcb }]]

END

We need to set the thread’s error condition to
some value and since no error has occurred, that is
eNoError. Additionally, some threads may already
be polling for this thread ID, so the thread incoming
and thread incoming gnos functions are updated ap-
propriately.

The CreateActiveThread2 operation is augmented
analogously and we omit its definition here.

Next we add necessary statements to DeleteThread
which clean up the affected variables in this machine.
The preconditions and parameters do not change.
Apart from the obvious domain subtraction of {tcb}
from thread ipc waiting *, thread ipc polling timeout,
thread recv * and thread error, we need to remove
the thread from both the range and domain of
thread ipc polling on:

thread ipc polling on :=

{ tcb } −C thread ipc polling on −B { tcb }

The application of the domain subtraction (−C,
precedence is left-to-right) removes all mappings de-
noting that this thread is polling on another one
(there is only one). Then, the application of range
subtraction (−B) removes all mappings denoting that
another thread is polling on this one. Those threads
that were polling on the one being deleted are now
stranded until their IPCs time out. Range subtrac-
tion is defined canonically:

r −B S = {x 7→ y | x 7→ y ∈ r ∧ y /∈ S }

This resolves the situation of who is polling on
whom. The thread still needs to be removed from the
incoming sets of other threads:

thread incoming :=

{ aa , bb |
aa ∈ dom (thread incoming) − { tcb } ∧
bb = thread incoming (aa) − { tcb } }

We do the removal via a set comprehension which
keeps only other threads’ incoming sets, but also re-
moves the deleted thread from them. We apply the
same technique to modify thread incoming gnos.

Operations from previous machines that com-
plete successfully need to clear the error attribute
of the thread they are operating on. Hence, we ex-
tended these operations with that functionality at the
IpcBase machine level. Their preconditions are al-
most the same as their Thread counterparts’, and the
operation body invokes them directly. The only dif-
ference is that they take an extra parameter (itcb)
that says which thread’s error attribute should be
cleared. We omit the B definition of these machines.

They are: InitialiseAddressSpace2, CreateThread2,
SetScheduler2, Migrate2, MigrateAndSetScheduler2,
ActivateInterrupt2 and DeactivateInterrupt2.

We now cover the operations directly related to
IPC. In all operations, the invoking thread is checked
with the canIpc definition of the IpcCore machine.

The first of the operations enabling IPC is Just-
Wait. It is invoked when a thread requests an IPC
operation consisting of a receive phase only, but no
thread in its incoming sets is available to receive from,
thus causing the receiver thread to wait. Given the
three parameters tcb (the thread wishing to receive),
timeout and fromSpecifier (who it is willing to receive
from), the preconditions are as follows: the thread
canIpc; timeout is either finite or infinite, but not
zero (instant time-out); fromSpecifier is not nilthread
and is either anythread or a known thread. Also,
the we exclude all conditions which would cause an
immediate IPC reception to occur: if fromSpecifier
is anythread, the requester must not have incoming
threads; for other specifiers, they must not be in the
incoming thread numbers. The work done by the op-
eration is minimal. It updates thread ipc waiting for
and its time-out equivalent to indicate the thread is
waiting and who it is waiting for. It also uses Set-
State to set the thread’s state to tsWaitingForever or
tsWaitingTimeout depending on the value of timeout.

JustWait(tcb, timeout, fromSpecifier) b=
PRE canIPC (tcb) ∧ timeout ∈ TIMEOUT ∧
¬ (isNoTimeout (timeout)) ∧
fromSpecifier ∈ GLOBAL TNO ∧
fromSpecifier 6= kNilGNo ∧
fromSpecifier ∈

thread gno [threads] ∪ { kAnyGNo } ∧
(fromSpecifier = kAnyGNo ⇒

thread incoming (tcb) = {}) ∧
(fromSpecifier 6= kAnyGNo ⇒
fromSpecifier 6∈ thread incoming gnos (tcb))

THEN

thread ipc waiting for (tcb) := fromSpecifier ‖
thread ipc waiting timeout (tcb) := timeout ‖
IF isInfinite (timeout) THEN

SetState (tcb , tsWaitingForever)

ELSE

SetState (tcb , tsWaitingTimeout)

END

END

We have covered threads that want to receive, but
cannot. The SetUpReceivePhaseAndPoll operation
handles the case of when the operation wants to send
but cannot (either the remote thread is not waiting,
or it is not waiting for the sending thread). The op-
eration takes tcb from and tcb to (sending and target
threads), poll timeout, recv timeout (time-out for the
future receive phase) and a fromSpecifier (who the
thread is willing to receive from in the receive phase,
or nilthread if there is no receive phase).

As in JustWait, tcb from must be able to perform
IPC. The target must be an existing thread. While
the poll time-out must not be zero, the receive time-
out is only restricted if fromSpecifier is not nilthread.
The actual fromSpecifier must be a thread number of
an existing thread.

SetUpReceivePhaseAndPoll(tcb from, tcb to, poll timeout,

recv timeout, fromSpecifier) b=
PRE canIPC (tcb from) ∧ tcb to ∈ threads ∧

(tcb to ∈ dom (thread ipc waiting for) ⇒
thread ipc waiting for (tcb to) 6=

thread gno (tcb from) ∧
thread ipc waiting for (tcb to) 6= kAnyGNo) ∧

fromSpecifier ∈ GLOBAL TNO ∧

11

poll timeout ∈ TIMEOUT ∧
¬ (isNoTimeout (poll timeout)) ∧
recv timeout ∈ TIMEOUT ∧
(fromSpecifier 6= kNilGNo ⇒

¬ (isNoTimeout (recv timeout))) ∧
fromSpecifier ∈ thread gno [threads] ∪

{ kAnyGNo , kNilGNo }
THEN

thread ipc polling on (tcb from) := tcb to ‖
thread ipc polling timeout (tcb from) := poll timeout ‖
thread incoming (tcb to) :=

thread incoming (tcb to) ∪ { tcb from } ‖
thread incoming gnos (tcb to) :=

thread incoming gnos (tcb to) ∪
{ thread gno (tcb from) } ‖

SetState (tcb from , tsPolling) ‖
IF fromSpecifier 6= kNilGNo THEN

thread recv waiting for (tcb from) :=

fromSpecifier ‖
thread recv waiting timeout (tcb from) :=

recv timeout

END

END

To verify that the operation happens in the afore-
mentioned circumstances, if the target thread is in
a waiting state, then it must not be waiting for
anythread (since this one will fulfil the criterion) and
it must not be waiting for from tcb’s number:

(tcb to ∈ dom (thread ipc waiting for) ⇒
thread ipc waiting for (tcb to) 6=

thread gno (tcb from) ∧
thread ipc waiting for (tcb to) 6= kAnyGNo)

Once that is established, the operation can pro-
ceed successfully by updating thread ipc polling * to
reflect the thread’s polling information, and also
adds from tcb and its thread number to the incom-
ing sets of tcb to. If fromSpecifier is not nilthread,
thread recv * is updated with the future waiting in-
formation.

Having covered the cases where IPC cannot hap-
pen, let us look at the simplest case of IPC occurring:
the thread requests an IPC with only a receive phase,
and a suitable thread is in its incoming set. Like
JustWait, JustReceive takes two parameters (whose
meaning is the same): itcb and fromSpecifier.

JustReceive(itcb, fromSpecifier)

It does not need a time-out as the operation will go
ahead immediately. The value of fromSpecifier must
not be nilthread, and must either be anythread (in
which case the incoming set must not be empty) or a
thread number already in the incoming set. The oper-
ation may then go ahead. However, it might not suc-
ceed due to aspects beyond the control of the current
model (such as the operation being aborted halfway
by another thread). We model this failure by non-
determinism.

canIPC (itcb) ∧ fromSpecifier ∈ GLOBAL TNO ∧
fromSpecifier 6= kNilGNo ∧
(fromSpecifier 6= kAnyGNo ⇒

fromSpecifier ∈ thread incoming gnos (itcb)) ∧
(fromSpecifier = kAnyGNo ⇒

thread incoming (itcb) 6= {})

The polling thread which is allowed to send is cho-
sen non-deterministically (since sets have no implicit
ordering):

ANY tcb from

WHERE tcb from ∈ thread incoming (itcb) ∧

(fromSpecifier 6= kAnyGNo ⇒
thread gno (tcb from) ∈

thread incoming gnos (itcb))

In other words, choose any of the threads in the
incoming set, with the extra constraint that if from-
Specifier is not anythread, that thread’s number must
be in the set of incoming thread numbers for the re-
ceiving thread. The preconditions guarantee that a
thread that satisfies this constraint actually exists.

Regardless of the IPC succeeding or failing, the
sending thread will no longer be polling at the end of
the operation:

thread ipc polling on :=

{ tcb from } −C thread ipc polling on ‖
thread ipc polling timeout :=

{ tcb from } −C thread ipc polling timeout

thread incoming (itcb) :=

thread incoming (itcb) − { tcb from } ‖
thread incoming gnos (itcb) :=

thread incoming gnos (itcb) −
{ thread gno (tcb from) }

Since it will no longer be polling, the future set-
tings for its receive phase will no longer be applicable.
If the IPC succeeds, they will be used to set up the
new receive phase for the thread. If IPC fails, they
will be discarded:

thread recv waiting timeout := { tcb from } −C
thread recv waiting timeout ‖

thread recv waiting for := { tcb from } −C
thread recv waiting for

We now reach the point where IPC either succeeds
or fails. This is performed using the non-deterministic
CHOICE path1 OR path2 END construct. During
animation, the user is asked to choose the path.

On the IPC success path, the IPC transfer is
performed and the error fields for both threads are
cleared:

PerformIPC (tcb from , itcb) ‖
thread error := thread error <+

{ itcb 7→ eNoError , tcb from 7→ eNoError }

Then, if the sender had a receive phase waiting, it
is set up (using identical statements to those in Just-
Wait). The receiving thread’s state does not change.
It was either running or an activated interrupt thread,
and remains so. If the sender does not have a receive
phase waiting, its waiting state is cancelled using Un-
Wait.

The IPC failure path consists of cancelling the
sender’s waiting state with UnWait and picking an
error non-deterministically among the possible unpre-
dictable IPC errors (see section 4.1) and assigned as
an error indicator for both threads.

WakeDestThenWait covers the opposite direction
to JustReceive: a thread wishes to send and the sec-
ond thread is waiting, the IPC occurs immediately,
the destination thread is woken up, while the source
thread starts waiting if a receive phase was specified.

WakeDestThenWait(tcb from, tcb to, recv timeout,

fromSpecifier)

The precondition combines aspects of the previous
IPC operations: the destination must be waiting for
either the source’s thread number or anythread ; from-
Specifier must be that of an existing thread, nilthread
or anythread ; a non-nilthread fromSpecifier indicates
a receive phase for the source and so recv timeout
must not be zero; there is no polling timeout, since
the operation goes ahead immediately.

12

This time there are no common items between the
success and failure paths.

The success path begins as for JustReceive by per-
forming the IPC transfer and clearing the error in-
dicators for both threads. If tcb from (the source
thread) did not request a receive phase, the opera-
tion can be quickly finished by domain subtraction
of tcb to from thread ipc waiting * and using Un-
Wait to cancel its waiting state. If it did request
a receive phase, then the situation is more compli-
cated. The destination still has to be removed from
thread ipc waiting *, but now the source thread must
also be inserted. The first half of the IF statement
is presented below, for when the time-out is infinite.
The second half is analogous, but the timeout is finite
and so the state will be tsWaitingTimeout :

thread ipc waiting for :=

{ tcb to } −C thread ipc waiting for ∪
{ tcb from 7→ fromSpecifier } ‖

IF isInfinite (recv timeout) THEN

thread ipc waiting timeout :=

{ tcb to } −C thread ipc waiting timeout ∪
{ tcb from 7→ eInfiniteTimeout } ‖

WakeUpAndWait (tcb from , tcb to ,

tsWaitingForever)

ELSE . . .

WakeUpAndWait is used to wake up tcb to, and
make tcb from wait with one of the time-outs.

We leave out the formal definition of the fail-
ure path here. It just removes the destination from
thread ipc waiting *, picks an error, sets it as the er-
ror attribute for both threads, and uses UnWait on
the destination thread.

The ResolveIPC operation covers the situation
where one thread1 is polling on thread2, while the lat-
ter is waiting for the former. Since neither of them is
executing, the kernel will perform the IPC. We omit
the formal definition of ResolveIPC(tcb from, tcb to).
It is a combination of JustReceive and WakeDest-
ThenWait. The main difference is the precondition.
It requires that both threads are active, the sender
is polling and the receiver is waiting, the sender is
polling on the receiver and the receiver either accepts
anythread or the receiver’s thread number.

When the kernel finds a thread that has been
polling for longer than its time-out value, a time-
out occurs. Since the model abstracts from exact
values for time-outs, we let the time-out occur non-
deterministically. The TimeoutPoll operation picks
any thread which is polling with a non-infinite time-
out and times it out. If such a thread does not exist,
it does nothing. Of course, non-determinism is not
random, it just states that the decision algorithm is
not specified at this level. During animation, the user
is asked to be that algorithm. The TimeoutPoll oper-
ation removes the thread from the state variables and
sets its error attribute to eSendTimeout. The Time-
outWait operation is the equivalent of TimeoutPoll,
but times out a thread which is waiting with a finite
time-out.

TimeoutPoll b=
BEGIN

IF thread ipc polling timeout B
{ eFiniteTimeout } = {}
THEN

skip

ELSE

ANY tcb

WHERE

tcb ∈ dom (thread ipc polling timeout B
{ eFiniteTimeout })

THEN

UnWait (tcb) ‖
thread ipc polling on :=

{ tcb } −C thread ipc polling on ‖
thread ipc polling timeout :=

{ tcb } −C thread ipc polling timeout ‖
thread incoming (

thread ipc polling on (tcb)) :=

thread incoming (

thread ipc polling on (tcb)) − { tcb } ‖
thread incoming gnos (

thread ipc polling on (tcb)) :=

thread incoming gnos (

thread ipc polling on (tcb)) −
{ thread gno (tcb) } ‖

thread recv waiting timeout :=

{ tcb } −C thread recv waiting timeout ‖
thread recv waiting for :=

{ tcb } −C thread recv waiting for ‖
thread error (tcb) := eSendTimeout

END

END

END

The IpcBase machine also provides an operation
SetError as a way for operations in higher-level ma-
chines to set the error attribute for an active thread.
This is used for example, to signal that a thread lacks
necessary privileges to perform an operation.

When we described the ExchangeRegisters
functionality in section 4.3.3, we only covered the
functionality pertaining directly to threads and their
control state. As the reference manual [13, section
2.3] states, ExchangeRegisters can be used to can-
cel or abort ongoing IPCs. Now that the IPC state
transitions are available, we can model the IPC func-
tionality in ExchangeRegisters. IpcBaseExchang-
eRegisters takes one fewer parameter than ThreadEx-
changeRegisters. It is the one that decides whether a
waiting/polling thread is to be woken up. The pre-
conditions, with the exception of the unwait flag are
identical.

IpcBaseExchangeRegisters(tcb, control, pager) b=
PRE tcb ∈ threads ∧ control ⊆ EXREGS FLAGS ∧

pager ∈ TCB ∧ tcb 6∈ kIntThreads

THEN

IF

ex S ∈ control ∧
tcb ∈ dom (thread ipc polling on)

THEN

ThreadExchangeRegisters(tcb, control, pager,

TRUE) ‖
thread ipc polling on :=

{ tcb } −C thread ipc polling on ‖
thread ipc polling timeout :=

{ tcb } −C thread ipc polling timeout ‖
thread incoming (

thread ipc polling on (tcb)) :=

thread incoming (

thread ipc polling on (tcb)) − { tcb } ‖
thread incoming gnos (

thread ipc polling on (tcb)) :=

thread incoming gnos (

thread ipc polling on (tcb)) −
{ thread gno (tcb) } ‖

thread recv waiting timeout :=

{ tcb } −C thread recv waiting timeout ‖
thread recv waiting for :=

{ tcb } −C thread recv waiting for ‖
ANY err WHERE

err ∈ { eSendCancelled , eAborted }

13

THEN

thread error (tcb) := err

END

ELSIF

ex R ∈ control ∧
tcb ∈ dom (thread ipc waiting for)

THEN

ThreadExchangeRegisters(tcb, control, pager,

TRUE) ‖
thread ipc waiting for :=

{ tcb } −C thread ipc waiting for ‖
thread ipc waiting timeout :=

{ tcb } −C thread ipc waiting timeout ‖
ANY err WHERE

err ∈ { eRecvCancelled , eAborted }
THEN

thread error (tcb) := err

END

ELSE

ThreadExchangeRegisters (tcb, control, pager,

FALSE) ‖
thread error (tcb) := eNoError

END

END

The functionality at the IPC level consists of the
following bits in control : if S = 1, a currently ongo-
ing send IPC operation will be aborted, while an IPC
send operation waiting to happen will be cancelled ; if
R = 1, likewise, but for receiving IPC. In the current
model, bits are not used. Instead, the bits are repre-
sented by set membership of ex S and ex R in control.
If neither are present, the operation invokes Thread-
ExchangeRegisters with unwait set to FALSE (do not
change the state) and clears the error attribute.

If ex S is present, the operation is removed from
the state variables to do with polling, as well as from
the incoming set of the thread it is polling on. Par-
allel composition means it is impossible to determine
whether the IPC operation was cancelled or aborted,
so a non-deterministic choice is made and becomes
the value of the thread’s error attribute. ThreadEx-
changeRegisters is invoked with the unwait flag equal
to TRUE, forcing the function to be awakened.

If ex S is present, events proceed as above, except
the thread is removed from state variables related to
waiting.

This concludes the operations of IpcBase. Having
defined all the core functionality present in the model,
we can now show an accurate view of state transitions
in figure 4.

4.5 API

This is the topmost machine in the specification. It
INCLUDES WeakSysCall and all context machines.

Operations in API are either direct equivalents of
L4 system calls, or operations representing system in-
ternals for use in animation. Their only real task at
this level is to provide precondition support to lower-
level operations (such as those in WeakSyscall) and
pick which of these operations to invoke. They are
very simple, if sometimes long, and are better exam-
ined directly.

It is worth noting that the top-level system-call op-
erations still have preconditions: the invoking thread
must be active and running, otherwise the system
scheduler is fundamentally broken.

To give the reader an idea of what such an opera-
tion looks like, we present the final version of Exchan-
geRegisters. It augments the IpcBaseExchangeReg-
isters operation with the error-checking necessary
to make it succeed, as well as non-deterministically

Figure 4: Possible state transitions in the model and
operations which cause them.

modelling the system call components not within the
scope of the formalisation:

ExchangeRegisters (itcb , tcb , control , sp , ip , flags ,

pager , handle) b=
PRE itcb ∈ active threads ∧

thread state (itcb) = tsRunning ∧
tcb ∈ TCB ∧ control ⊆ EXREGS FLAGS ∧
sp ∈ N ∧ ip ∈ N ∧
pager ∈ TCB ∧ flags ∈ N ∧ handle ∈ N

THEN

SELECT tcb 6∈ threads THEN

SetError (itcb , eInvalidThread)

WHEN tcb ∈ threads ∧
thread space (tcb) 6= thread space (itcb)

THEN

SetError (itcb , eInvalidThread)

ELSE

CHOICE

IpcBaseExchangeRegisters (tcb , control , pager)

OR

ANY error

WHERE error ∈ { eOutOfMemory ,

eInvalidUtcbLocation }
THEN

SetError (itcb , error)

END

END

END

END

As mentioned before, the two remaining non-trivial
assumptions are that the invoking thread itcb must
be active and running (otherwise it cannot perform
a system call). Via the non-deterministic SELECT
statement with exclusive conditions, we enforce the
preconditions of IpcBaseExchangeRegisters: the tar-
get thread tcb must exist and be in the caller’s address
space. If the preconditions are met the operation will
succeed, but this is not necessarily true of the sys-
tem call [13, section 2.3]: we may be out of memory
or point to a bad memory location. Since the virtual
memory subsystem is outside the scope of this formal-
isation, we model these failures via non-deterministic
choice. The instruction and stack pointers, due to no
knowledge of memory layout, are ignored; so is the
user-defined handle, since it has no effect on actions
performed by the kernel.

14

5 Conclusion

In this paper we have described our formalisation
of the L4 high-performance microkernel in the B
method. The main work on the formalisation was
done as the honours thesis project of the first au-
thor which equates to an investment of roughly 5 per-
son months. The final formalisation extends to about
2000 lines of B specification.

The goals of the formalisation effort were reached.
The model is animatable and can be used as a learning
tool. During the project it became apparent that in
spite of detailed, good quality documentation, there
were a number of ambiguities in the description of the
L4 API and even inconsistent expectations towards
its behaviour. Using code inspection and discussions
with L4 developers those could be resolved, made pre-
cise and documented in the model. We are confident
that the formalisation provides a good basis for the
planned revision of the L4 API that involves formal
modelling from the start.

The level of detail that was achieved during the
available time frame suggests that formal specifica-
tion of real-world operating system kernels is entirely
feasible, a good opportunity for documentation, and
a good starting point for verification of the system.

The context of this work is a pilot project on ex-
actly that: the verification of the L4 microkernel. In
other work [20] we have demonstrated the feasibility
of this as well. With an investment of about 1.5 per-
son years we were able to specify a significant part of
the L4 virtual memory subsystem and fully verify it
down to C code, integrated into the kernel, running
on real hardware.

Despite the good results and progress we achieved
using the B method, we found that a number restric-
tions were hindering our work. They are not directly
a fault of the B method itself, but more of an incom-
patibility with our goals. The requirement for anima-
tion for instance, precluded some more convenient for-
malisation mechanisms. Furthermore, the B method
is geared towards refinement proofs in multiple steps
with code generation at the end. We do agree in prin-
ciple with this technique, but although the code gen-
eration step from B to the C programming language
seems appropriate for application code, it bridges too
large a gap to effectively control performance critical
sections in operating systems code.

We therefore decided to use the other formalism
that was successfully applied in the pilot project, Is-
abelle/HOL [16], for the future, full verification. The
main concepts of the B formalisation — a state based
description of the L4 API functions will stay the same,
only the notation will be different (higher order logic
instead of set theory).

In fact, we are not performing a translation from
B to Isabelle/HOL, but we are first developing a new
version of the L4 API that introduces efficient and
flexible security mechanisms. As most of the API
will stay unchanged, the hope is that the experience
gained in this formalisation will significantly speed
up the formal specification process. Moreover, the
formal specification this time is integrated with the
API design from the start.

We estimate that the full verification of L4 will
take about 20 person years, including verification tool
development. This effort must be seen in relation to
the cost of developing the kernel in the first place, and
the potential benefits of verification. The present ker-
nel was written by a three-person team over a period
of 8–12 months, with significant improvements since.
Furthermore, for most of the developers it was the
third in a series of similar kernels they had written,
which meant that when starting they had a consid-
erable amount of experience. A realistic estimate of

the cost of developing a high-performance implemen-
tation of L4 is probably at least 5–10 person years.

Under those circumstances, we argue that the full
verification of L4 is highly desirable and provides a
good return of investment. The kernel is the lowest
and most critical part of any software stack, and any
assurances on system behaviour are built on sand as
long as the kernel is not shown to behave as expected.
Furthermore, formal verification puts pressure on ker-
nel designers to simplify their systems, which has ob-
vious benefits for maintainability and robustness even
when not yet formally verified.

Acknowledgements We thank Ken Robinson who
supervised the honours thesis, Kevin Elphinstone who
assessed it, and the L4 development team for their
help and useful discussions. We also thank Ansgar
Fehnker for reading drafts of this paper.

References

[1] J.-R. Abrial. The B Book: Assigning Programs
to Meanings. Cambridge University Press, 1996.

[2] B-Core. The B-Toolkit. http://www.b-core.
com/btoolkit.html, 2002.

[3] W. R. Bevier. Kit: A study in operating system
verification. IEEE Transactions on Software En-
gineering, 15(11):1382–1396, 1989.

[4] W. R. Bevier and L. M. Smith. A mathematical
model of the Mach kernel. Technical Report 102,
Computational Logic, Inc., 1994.

[5] T. Cattel. Modelization and verification of a mul-
tiprocessor realtime OS kernel. In Proceedings of
FORTE ’94, Bern, Switzerland, 1994.

[6] G. Duval and J. Julliand. Modelling and veri-
fication of the RUBIS µ-kernel with SPIN. In
SPIN’95, Workshop on Model Checking of Soft-
ware, 1995.

[7] S. Fowler and A. Wellings. Formal analysis of a
real-time kernel specification. In B. Jonsson and
J. Parrow, editors, Formal Techniques in Real-
Time and Fault-Tolerant Systems, volume 1135,
pages 440–458, Uppsala, Sweden, 1996. Springer-
Verlag.

[8] M. Gargano, M. Hillebrand, D. Leinenbach, and
W. Paul. On the correctness of operating sys-
tem kernels. In Proc. 18th International Confer-
ence on Theorem Proving in Higher Order Logics
(TPHOLs 2005), Oxford, UK, 2005. to appear.

[9] M. Hohmuth, H. Tews, and S. G. Stephens. Ap-
plying source-code verification to a microkernel
— the VFiasco project. Technical Report TUD-
FI02-03-März, TU Dresden, 2002.

[10] G. Klein and H. Tuch. Towards verified virtual
memory in L4. In K. Slind, editor, TPHOLs
Emerging Trends ’04, Park City, Utah, USA,
2004.

[11] R. Kolanski. A formal model of the µ-kernel api
using the b method. Honours Thesis, School of
Computer Science and Engineering, The Univer-
sity of New South Wales, Sydney, 2004.

[12] L4 development team. L4ka::pistachio source
code v0.3. http://www.l4ka.org/download/,
2004.

15

http://www.b-core.com/btoolkit.html
http://www.b-core.com/btoolkit.html
http://www.l4ka.org/download/

[13] L4Ka Team. L4 eXperimental Kernel Refer-
ence Manual Version X.2r3, 2004. http://www.
l4ka.org.

[14] J. Liedtke. Towards real µ-kernels. Communica-
tions of the ACM, 39(9):70–77, 1996.

[15] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N.
Levitt, and L. Robinson. A provably secure oper-
ating system: The system, its applications, and
proofs. Technical Report CSL-116, SRI Interna-
tional, 1980.

[16] T. Nipkow, L. Paulson, and M. Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer,
2002.

[17] K. Robinson. A concise summary of the B math-
ematical toolkit. http://www.cse.unsw.edu.
au/~cs2110/B-Summary/, 2005.

[18] J. Shapiro and S. Weber. Verifying operating
system security. Technical Report MS-CIS97-26,
University of Pennsylvania, Philadelphia, PA,
USA, 1997.

[19] J. M. Spivey. Specifying a real-time kernel. IEEE
Software, 7(5):21–28, September 1990.

[20] H. Tuch and G. Klein. Verifying the L4 virtual
memory subsystem. In G. Klein, editor, Proc.
NICTA FM Workshop on OS Verification, pages
73–97. Technical Report 0401005T-1, National
ICT Australia, 2004.

[21] P. Tullmann, J. Turner, J. McCorquodale,
J. Lepreau, A. Chitturi, and G. Back. Formal
methods: a practical tool for OS implementors.
In HotOS-VI, 1997.

[22] B. J. Walker, R. A. Kemmerer, and G. J. Popek.
Specification and verification of the UCLA Unix
security kernel. Communications of the ACM,
23(2):118–131, 1980.

16

http://www.l4ka.org
http://www.l4ka.org
http://www.cse.unsw.edu.au/~cs2110/B-Summary/
http://www.cse.unsw.edu.au/~cs2110/B-Summary/

	Introduction
	Related Work
	Notation
	The Formalisation
	Context Machines
	Address Spaces
	Threads
	Variables
	Initialisation
	Operations

	Inter Process Communication
	Variables
	Initialisation
	Operations

	API

	Conclusion

